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Dispersal dynamics have significant consequences for ecological and evol-

utionary processes. Previous work has demonstrated that dispersal can be

context-dependent. However, factors affecting dispersal are typically con-

sidered in isolation, despite the probability that individuals make dispersal

decisions in response to multiple, possibly interacting factors. We examined

whether two ecological factors, predation risk and intraspecific competition,

have interactive effects on dispersal dynamics. We performed a factorial

experiment in mesocosms using backswimmers (Notonecta undulata), flight-

capable, semi-aquatic insects. Emigration rates increased with density, and

increased with predation risk at intermediate densities; however, predation

had minimal effects on emigration at high and low densities. Our results indi-

cate that factorial experiments may be required to understand dispersal

dynamics under realistic ecological conditions.
1. Introduction
Dispersal plays a central role in many ecological and evolutionary processes [1].

Theory suggests that dispersal evolves to balance the costs of dispersal versus

philopatry across a range of social and environmental contexts [2,3]. Empirical

studies have demonstrated a dependence of dispersal on a number of local eco-

logical factors, including predation risk, competition and habitat quality

(reviews in [2,4,5]).

Despite evidence suggesting that organisms use multiple cues to make

dispersal decisions (e.g. [6]), most previous studies have manipulated single

factors. However, any one factor may interact with either internal or external

cues in their effects on dispersal. For example, the presence of predators can

eliminate the effects of personality on dispersal propensity in mosquitofish

[7]. Context-dependent dispersal may also be modified by interactions in an

animal’s response to multiple external cues. If these multiple ecological factors

have interactive, rather than additive effects, then understanding dispersal

responses to environmental cues requires a factorial design. Moreover, contra-

dictory results from single factor studies may be the result of unrecognized

interactions. For example, the measured effect of competition on dispersal has

been inconsistent in magnitude and even sign. As predicted by theory [2],

observed dispersal rates generally exhibit positive density dependence [8,9],

yet other studies report no density dependence [10], or even negative density

dependence [11–13]. Negative density dependence could result from Allee

effects in some cases [2,5], but not in species where individuals are solitary

(e.g. [12]). An alternative hypothesis for the inconsistency in the magnitude

and sign of density-dependent dispersal is that other factors interact with

density to influence dispersal [2,14,15].

Predator-induced dispersal has been demonstrated in a wide variety of taxa

[16,17]. Although the response to predators is usually an increase in dispersal

rates, these effects may depend on prey density through predator-induced
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Figure 1. Mean proportion of individuals that emigrated from the tanks by
the end of the experiment +s.e. Low, medium, and high density tanks
contained 19, 38 and 60 notonectids, respectively.
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behavioural responses, including decreased foraging rates

and increased refuge use [18]. Reduced foraging may amelio-

rate competition for food [19], while increased refuge use

may intensify competition within refuges [20]. Moreover, in

the absence of predator numerical responses, predation risk

will depend on prey density, and predator functional

responses often result in nonlinear relationships between

prey density and predation risk. Thus, an interactive effect

of density and predation on dispersal may be common.

Here, we tested the hypothesis that competition and

predation risk interact in their effect on emigration rates in the

flight-capable, semi-aquatic insect, Notonecta undulata (Hetero-

ptera: Notonectidae). We conducted a factorial experiment in

pond mesocosms in which we manipulated density and preda-

tion risk. We predicted that the relationship between density

and emigration rate would depend on the level of predation risk.
140287
2. Material and methods
Notonecta spp. are semi-aquatic insects that complete their entire

life cycle in the aquatic environment, but can disperse by flight

among ponds as adults. Notonecta undulata is generally associ-

ated with fishless ponds but can coexist with fishes, including

the pumpkinseed sunfish, Lepomis gibbosus, which we used as

the predator in our experiment. Lepomis gibbosus readily

consumes N. undulata adults in the laboratory [21].

We tested whether N. undulata exhibits density-dependent

dispersal, and whether the sign or strength of density depen-

dence varied among different levels of predation risk. We

performed a mesocosm experiment at the Koffler Scientific

Reserve (KSR) in Ontario, Canada in July–August 2012 that

manipulated predation risk and notonectid density to assess

whether either of these factors plus their interaction influenced

emigration rates.

We filled 30 cattle tanks (378 l; 1.35 � 0.79 � 0.64 m) with

water, a standard volume of leaves, artificial vegetation to pro-

vide structure and a standard inoculation of zooplankton as

food for notonectids. All tanks had fish cages consisting of a

5 l plastic basket with a Styrofoam lid, covered in 1 mm mesh

screening. In predator treatments, these cages allow notonectids

to receive visual and olfactory cues signalling the presence of a

predator without being consumed. In predator absent treat-

ments, empty cages controlled for the presence of this

structure. A piece of 70% shade cloth covered approximately

one-third of each tank to keep the water cool, while allowing

notonectids to disperse.

We collected adult notonectids from a fishless pond at KSR

and kept them in covered holding tanks at densities of approxi-

mately 100 insects per 378 l tank for 1–9 days (see the electronic

supplementary material, Appendix). We collected adult fish

(standard length ¼ 17.3+2.0 cm) from a different KSR pond

and caged fish individually in half of the experimental tanks.

After 24 h, we randomly assigned notonectids to experimental

tanks. We crossed notonectid density with the presence of fish

in a 3 � 2 factorial design. Tanks received 19, 38 or 60 notonec-

tids to produce tanks with low, medium or high notonectid

densities. These densities fall within the natural range for this

species ([22]; see the electronic supplementary material, Appen-

dix). Each density � fish treatment was replicated five times.

We fed fish one cube of frozen bloodworms and one live

notonectid per day.

Tanks were left uncovered for 12 days to allow notonectids to

disperse. We estimated emigration rates by counting the number

of notonectids remaining in each tank. Because counts could not

be made on all 30 tanks in 1 day, we divided tanks into three

time blocks, and counted the notonectids within these blocks
on three consecutive days. Time blocks 1, 2 and 3 contained 12,

12 and 6 tanks, respectively, with each treatment equally rep-

resented in each block. We counted all remaining notonectids

on two separate occasions: on the first 3 days of the experiment

(first round) and again on the last 3 days (last round).

In order to avoid conflating mortality with emigration, we

recorded the number of dead notonectids and removed them

from the analysis. Even deaths owing to cannibalism could be

accounted for in this way because notonectids consume only

the insides of their prey, leaving the exoskeletons intact.

Immigration of experimental or wild notonectids into cattle

tanks was possible but probably uncommon because in similar

experiments on the same species, only a small proportion of

experimental (3–5%) or wild (less than 0.01% of the experimental

population size) notonectids did so [17].
(a) Statistical analysis
We used a generalized linear model with a quasi-binomial error

distribution and a logit link (i.e. logistic regression with overdis-

persion) to model the effects of fish presence, notonectid density,

block and all possible interactions on dispersal status (emigrated

or philopatric). Since there was no replication of treatments in

time block 3, we excluded it from the analysis in order to evalu-

ate the effect of time block. We found no significant effect of

block; we therefore dropped block from all future analyses.

Using the entire dataset, we then analysed the effects of fish

presence and notonectid density on dispersal status using logistic

regression with overdispersion, followed by independent con-

trasts. Notably, the results did not differ qualitatively whether

block 3 was included or not. All analyses were performed in

JMP v. 11.0.0.
3. Results
We only present the results from the last round here, but

results for the first were similar (see the electronic sup-

plementary material, Appendix).

The probability of emigration increased significantly with

density (x2
2 ¼ 15:990, p ¼ 0.0003), but there was no significant

main effect of predation risk (x2
1 ¼ 0:998, p ¼ 0.318). How-

ever, there was a strong and significant interaction between

fish presence and notonectid density on the probability of

emigration (x2
2 ¼ 10:175, p ¼ 0.006; figure 1).

Independent contrasts demonstrate that the presence of a

predator increased emigration significantly only at medium
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notonectid density (medium density/fish versus medium

density/no fish: x2
1 ¼ 14:299, p ¼ 0.0002), which accounts

for the interaction between density and predation risk.
 royalsocietypublishing.org
Biol.Lett.10:20140287
4. Discussion
Our results demonstrate that emigration of N. undulata
depended upon density and the interaction between density

and predation (figure 1). Predation risk, which was pre-

viously shown to affect emigration in this species [17], only

increased emigration at intermediate densities. Overall, emi-

gration rates exhibited positive density dependence, which

is consistent with the hypothesis that individuals disperse

to avoid competition. However, the relationship between

density and dispersal was nonlinear (see also [13,23]). The

shape of this relationship suggests a density threshold for dis-

persal in this species. Density thresholds represent the

density at which individuals switch from being philopatric

to dispersive. Here, we provide evidence for a density

threshold that is dependent on predation risk. In fish tanks,

the relationship between density and dispersal is shifted to

the left, so that lower densities are required to induce disper-

sal (figure 1). This is consistent with previous theoretical

work showing that when predation risk is temporally auto-

correlated, as it is in the Notonecta system, patches with

predators should evolve lower density thresholds for disper-

sal [24]. These results suggest that we cannot understand the

effects of density or predation risk on dispersal without

considering their interactive effects.
We focused on one stage of dispersal, emigration; however,

other stages of dispersal (transience and immigration) may be

differentially affected by these factors and their interaction.

While predation risk generally increases emigration rates in

adults, juvenile exposure to predators may reduce foraging

rates or cause utilization of suboptimal foraging habitat, redu-

cing adult condition [20,25]. Adults in poor condition may

have a reduced probability of successful transience and immi-

gration [26], further complicating our estimation of the effects

of ecological factors on dispersal dynamics. We propose that

future research should use multi-factor experiments to investi-

gate dispersal dynamics in multiple ecological contexts and

through the entire dispersal process.

Our results suggest that multifaceted behavioural responses

to local conditions have the potential to shape patterns of con-

nectivity at regional scales. Understanding the effects of

ecological factors at these scales requires an understanding of

the roles that interactions between these ecological factors

play in dispersal.

The experiment was approved by the University of Toronto’s
Bioscience Local Animal Care Committee.
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