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Opinion
Glossary

Apparent stabilizing selection: a measured trait does not directly affect fitness

and, therefore, is not directly under selection; however, pleiotropic covariation

with traits that do directly affect fitness generates the appearance of selection

on that trait; also referred to as indirect stabilizing selection.

gmax: the first eigenvector of the additive genetic variance–covariance matrix,

G. The coefficients of this vector represent an index of the linear combination

of measured traits associated with the greatest genetic variance, and can be

applied to either phenotypic trait values or breeding values to generate

phenotypic or genetic scores.

Hidden pleiotropic effects: the pleiotropic relationship between a measured

trait and an unmeasured trait, which can generate the appearance of stabilizing

selection on the measured trait even in the absence of any direct effect of the

trait on fitness.

Metric trait: a measured trait that exhibits continuous variation.

Multivariate phenotype: a phenotype composed of multiple traits.

Mutation bias: the propensity of mutations to change the phenotype in a

particular direction.

Real stabilizing selection: variance-reducing selection acting directly on the
Evolutionary theory has emphasized that the evolution
of single traits cannot be understood in isolation when
pleiotropy is present. Widespread pleiotropy causes the
appearance of stabilizing selection on metric traits ow-
ing to joint effects with fitness, and results in the genetic
variation being concentrated in relatively few combina-
tions of the measured traits. In this review, we show
how trait combinations with high levels of genetic vari-
ation can be used to uncover fitness optima that are
defined by apparent stabilizing selection. Defining fit-
ness optima in this way could provide one avenue by
which researchers can overcome the problem posed by
measuring the myriad of traits that must influence fit-
ness, or by measuring total fitness itself.

Multivariate evolution and the problem of measuring
fitness
A fundamental challenge in evolutionary biology remains
the characterization of multivariate phenotypes [1], their
underlying genetic basis [2–4] and how selection acts on
these complex phenotypes [5,6]. Difficulties in measuring
complex, high-dimensional multivariate phenotypes and
in determining their genetic basis, have contributed to an
empirical focus on single traits and their bivariate relation-
ships. This limited focus has led to incomplete genetic and
evolutionary interpretations of empirical data [7,8], and to
a disconnect between empirical data and theoretical mod-
els of evolution, which explicitly emphasize the importance
of multivariate relationships among traits [3,4,9–12]. Re-
cent developments in characterizing multivariate pheno-
types and genetic variation are beginning to equip
empiricists with themeans to bridge this divide [1,8,13,14].

The need to describemultivariate phenotypes adequate-
ly is part of the greater challenge in evolutionary biology
posed by the problem of measuring fitness [15,16]. Fitness
is highly complex, with numerous component traits con-
tributing to lifetime reproductive success. Measuring the
fitness of individuals is, and probably will remain, beyond
the logistical capability of most empirical systems. Devel-
opmental instability [17], heterozygosity [18,19] and con-
dition [20,21] have each been suggested as measures that
capture genome-wide aspects of fitness variation, circum-
venting the need to measure the fitness of individuals
directly. However, there is weak or equivocal evidence that
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individuals with high developmental instability [22], low
heterozygosity [23] or low condition [15,24] have lower
fitness than do other individuals in the population. Under-
standing of the evolution of focal traits ultimately depends
on their genetic covariation with fitness [25]. Therefore,
new, general approaches, that are applicable across a
range of empirical systems, are required to characterize
how traits co-vary genetically with fitness.

Here, we outline the theoretical justification for, and
empirical application of, a new approach to the study of
how traits co-vary with fitness and the subsequent charac-
terization of fitness optima. Our approach rests on recogniz-
ing two general consequences of widespread pleiotropy that
underlie theoretical explanations of the maintenance of
genetic variance [3,4,9,10]. First, pleiotropy causes the ap-
pearance of stabilizing selection on metric traits (see Glos-
sary) as a consequence of joint effects on these metric traits
and on traits that directly affect fitness [3]. Second, pleiot-
ropy restricts genetic variance in traits to a subspace of the
multivariate phenotype, causing most of the genetic vari-
ance to be associated with just a few combinations of the
measured traits [10,14]. We argue that these two general
consequences of pleiotropy cause the trait combinations
associated with the most multivariate genetic variance to
be informative metrics of how individuals deviate from the
fitnessoptimum.Wedetail empirical approaches that canbe
taken to undercover fitness optima through consideration of
these trait combinations.
measured trait; also referred to as direct stabilizing selection.
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Pleiotropy and apparent stabilizing selection
The extent of mutation bias is expected to differ between
metric traits and fitness itself. Mutations will tend to
increase or decrease the value of a metric trait with equal
frequency, but will decrease fitness more often than they
increase it [26].Whenmutations have pleiotropic effects on
the focal metric trait and on fitness, the metric trait will
appear to be associated with fitness even when it does not
make a direct phenotypic contribution to lifetime repro-
ductive success. The deleterious fitness effects of pleiotro-
pic mutations thus generate apparent stabilizing selection
on focal metric traits [3,4,9]. That is, genotypes with ex-
treme values of the metric trait are likely to carry more
mutations, each with deleterious pleiotropic effects on
fitness, resulting in selection for intermediate values of
the metric trait. A substantial proportion of the selection
observed on a focal metric trait is therefore likely to have
been generated through hidden pleiotropic effects on other
traits under selection and, ultimately, on fitness itself [3,5].

If all traits could bemeasured, real (direct) and apparent
stabilizing selection could be readily distinguished using
multivariate selection analysis (Box 1). However, in the
more general situation where relatively few traits are mea-
sured, selection acting on unmeasured traits that directly
affect fitness, and are correlated with the focal (measured)
traits, will be misconstrued as real stabilizing selection
Box 1. Apparent stabilizing selection on metric traits

A change in the phenotypic variance of a trait (zi) as a consequence of

stabilizing (or disruptive) selection can be measured using the

quadratic selection differential (Equation I) [5]:

Ci ¼ s2
z�

i
� s2

zi
þ s2; [Eqn I]

correcting the difference between phenotypic variance before (s2
zi

)

and after (s2
z�
i
) selection for the effect of directional selection on the

variance (s2). An alternative form can be given in terms of the squared

deviation of each individual from the mean of the population (m)

(Equation II):

Ci ¼ s½w ; ðzi � mi Þðzi � mi Þ� [Eqn II]

where C is now the covariance between relative fitness (w) and the

squared deviations for each individual from the population mean,

(zi � mi)
2.

In the presence of a second trait, the deviation from the mean in the

first trait (zi � mi) for an individual can co-vary with the deviation of the

second trait from its own mean (zj � mj) (Equation III):

Ci j ¼ s½w ; ðzi � mi Þðzi � mi Þ� [Eqn III]

and the change in varianceofboth traits owingtoselectionactingdirectly

on the variances can be represented in matrix form as Equation IV:

C ¼ Ci Ci j

Ci j C j

� �
: [Eqn IV]

The strength of nonlinear selection on each trait (gij), corrected for

selection on each of the other traits, can be estimated using quadratic

regression [5] (Equation V):

g ¼ P�1 C P�1 [Eqn V]

where g is the matrix of quadratic selection gradients (assuming trait

means are standardized to zero), and P is the phenotypic variance–

covariance matrix (Box 2).
acting directly on the focal traits.Owing to the intractability
of measuring large numbers of traits [1], this expectation of
widespread apparent (rather than real) stabilizing selection
remains largely untested (but see [27]).

The presence of widespread pleiotropy predicts another
aspect of selection on multiple traits that is not obvious
from estimates of the strength of selection for each trait in
isolation (i.e. the quadratic selection gradients along the
diagonal of g, Box 1) [4]. Correlational selection between
pairs of traits (the off-diagonal elements of g) indicates that
selection on one trait is not independent of selection on
another. If real stabilizing selection occurred on all pheno-
typic traits independently, individuals would deviate from
the optimumphenotype formany reasons and, consequent-
ly, overall fitness (summed across all traits) would be
unrealistically low [10]. The degree of non-independence
of selection on multiple traits is revealed by the eigenvec-
tors of g [6], which describe the independent linear trait
combinations that are under strong (or weak) selection.
Such analyses support the expectation that selection can-
not be acting independently on individual traits; stabiliz-
ing selection is stronger on some trait combinations than
on others, and much stronger on such multivariate trait
combinations than on individual traits [28] (in the example
in Box 1, selection on themajor axis of g is 2.5 times greater
than on individual traits).
As an example of apparent stabilizing selection, imagine three traits

(zi, zj and zk) are all under univariate stabilizing selection, with

quadratic selection differentials of 0.05, 0.05 and 0.1, respectively, so

that zk experiences twice the amount of stabilizing selection as the

other two traits. All traits have the same phenotypic variance, and are

phenotypically correlated to each other to the same moderate degree

(jrj = 0.5). Using (Equation V), and including covariances between the

selection differentials, this can be represented as:
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Although zk experiences twice the reduction in variance experi-

enced by the other two traits, there is little direct stabilizing selection

(gkk = S0.008) on this trait. Both zi and zj experience three times the

level of stabilizing selection that zk does. The observed reduction in

variance in zk is therefore primarily a consequence of apparent

(indirect) stabilizing selection generated by direct selection on zi and

zj. The covariance structure (both of the quadratic deviations in C and

the phenotypes in P) generates the appearance of stabilizing selection

on zk. This can be more clearly understood by reducing the problem

to a univariate combination of traits that represents the first

eigenvector of C, Cmax = [S0.421, S0.421, 0.803], with an associated

eigenvalue of lCmax ¼ 0:173, experiences most (86.5%) of the quad-

ratic selection in C and is heavily weighted by zk. This trait

combination has a large phenotypic variance (PCmax = CT
maxPC-

max = 3.708; 62% of the total phenotypic variance), and therefore has

a correspondingly small quadratic selection gradient (
lCmax

P2
Cmax

� 0:013).

The general overestimation of direct stabilizing selection acting on

single traits is a probable outcome of the action of such indirect

selection [5].
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Pleiotropy and gmax as a summary of multivariate

genetic variance

There are at least two general observations that reveal how
pleiotropy undermines the genetic independence of multi-
ple traits, suggesting the potential for simple summary
measures of genetic variation to provide insight into fit-
ness. First, the mutation rate for a metric trait is approxi-
mately one-tenth of the mutation rate for an individual
[10,19]. This high per-trait mutation rate relative to the
per-individual rate reveals that many mutations must
have pleiotropic effects and, therefore, that there cannot
be a large number of traits that are individually affected by
non-pleiotropic mutations [10].

Second, widespread pleiotropy results in relatively few
genetically independent trait combinations that account
Box 2. Genetic analysis of multiple metric traits

Consider the following example, where five sires have each

produced two offspring, which were assayed for four traits. Let zi,j,k

denote the phenotypic value of the kth trait, of the jth individual from

the ith sire:

Z ¼

z1;1;1 z1;2;1 � � � z1;j;1

z1;1;2 }

..

.
}

z1;1;k zi;j;k

0
BBB@

1
CCCA

¼

�1:2 �1:1 �1:1 �0:2 0:0 0:8 �0:2 �0:1 0:6 0:8
�2:2 �0:9 �0:2 �0:8 �0:6 �1:1 �0:1 1:0 0:8 1:8
�2:3 0:1 �0:8 �0:3 �0:3 �0:4 0:1 0:2 1:0 1:5

1:3 0:7 0:1 0:6 0:4 �1:0 �0:4 0:0 0:2 �1:7

0
BB@

1
CCA

The relationships among the traits can be visualized as bivariate

plots (Figure I). In multivariate statistics, these relationships are often

represented by the phenotypic covariance matrix (P), which contains

the variances of the traits along the diagonal, and the covariances

between bivariate traits as off-diagonal elements. The covariance

structure of P can be determined by diagonalizing this symmetrical

matrix using L = SS1GS, where L is a diagonal matrix containing the

eigenvalues, and S is a matrix containing the eigenvectors as

columns:

P ¼

0:54 0:46 0:50 �0:45

1:19 0:94 �0:56

0:98 �0:52

0:64

0
BB@

1
CCAL ¼

2:67

0:40

0:18

0:10

0
BB@

1
CCA

S ¼

0:35 �0:58 0:47 �0:57

0:62 0:51 �0:38 �0:47

0:57 0:21 0:54 0:58

�0:40 0:59 0:59 �0:37

0
BB@

1
CCA

This diagonalization is analogous to principal components analysis

of the covariance matrix of multiple phenotypic traits in an

unstructured data set. When the data have structure, as here where

individuals had different sires, P can be decomposed into the

observed variance–covariance matrices for each level (in this

example, the among-sire variance–covariance matrix and the within

sire variance–covariance matrix). The among-sire variance–covar-

iance matrix, which here is equated with G (the additive genetic

variance–covariance matrix), can then be subjected to the same

diagonalization as used above, and the distribution of genetic

variance among genetically independent trait combinations deter-

mined.

Using a general linear model (GLM; nested individuals within

sires) to decompose P into the two observed variance–covariance

24
for most of the genetic variance in the set of measured
traits [10]. The distribution of genetic variance across
multiple traits is described by the genetic variance–co-
variance (G) matrix, from which genetically independent
trait combinations can be established by diagonalization
(Box 2). The eigenvalues of G, which are estimates of the
genetic variance associated with the trait combination
described in the associated eigenvector, typically decline
exponentially [14,29]. That is, most genetic variance in G
is present in the first few eigenvalues, indicating that
pleiotropic covariation among traits causes most of the
genetic variance to be confined to a subspace of the multi-
variate phenotype [14].

The first eigenvector of G, gmax, is a summary metric
that has been influential in studies of directional pheno-
matrices, G and the associated diagonalization for this example

are:

G ¼

0:51 0:62 0:52 �0:42

0:99 0:77 �0:50

0:47 �0:41

0:11

0
BBB@

1
CCCA;L ¼

2:26

0:10

�0:10

�0:18

0
BBB@

1
CCCA;

S ¼

0:46 �0:77 �0:31 0:32

0:66 0:60 �0:46 0:05

0:49 0:07 0:83 0:25

�0:34 0:22 �0:09 0:91

0
BBB@

1
CCCA

The first eigenvector of G, the linear combination of the original traits

that displays the greatest amount of genetic variance, is found in the

first column of S, and has been termed gmax [31]. We focus here on gmax

because the eigenvalues of G typically decline exponentially [14,29],

but subsequent eigenvectors of G might also explain substantial

proportions of the genetic variance in some trait sets, and hence be

pleiotropically associated with fitness. When the eigenvalues of G are

similar in magnitude, capturing similar levels of genetic variance,

investigation of these other trait combinations contained in other

columns of S could also be informative of the fitness optimum.
[()TD$FIG]

Trait 1 Trait 2 Trait 3 Trait 4

T
ra

it 
1

T
ra

it 
2

T
ra

it 
3

T
ra

it 
4

TRENDS in Ecology & Evolution 

Figure I. Bivariate scatterplots of the four measured traits for the ten offspring of

the five sires.



Box 3. Genetic analysis of gmax in the presence of apparent stabilizing selection

Building on the example in Box 2, where the ten sons of five sires

were each assayed for four traits, the coefficients of the first

eigenvector of G represent an index that can be used to generate a

phenotypic score for gmax for each of the ten individuals using:

Zgmax
¼ gmax

TZ ¼ ð�3:6 � 1:2 � 1:0 � 0:9 � 0:7 � 0:2 0:0 0:7 1:2 2:8Þ

These phenotypic scores can then be subjected to the same GLM

used to estimate G to then estimate the genetic variance of gmax, the

genetic correlation between gmax and other traits, or the genetic

(breeding) values for gmax. Alternatively, the coefficients of gmax can

be applied to the breeding values for each of the four traits to estimate

the breeding values for gmax using Agmax
¼ gmax

TA, where A is the

matrix of breeding values.

In addition to the four phenotypic traits, if fitness of the ten

individuals was observed to be:

W z ¼ ð0:3 1:1 1:2 1:2 1:2 1:3 1:3 1:2 1:1 0:5Þ;
gmax would be under strong phenotypic stabilizing selection; individ-

uals with intermediate phenotypic scores for gmax have the highest

fitness (Figure Ia). Despite this, the genetic correlation (rA) between

gmax and fitness is negligible (0.24; Figure Ib). However, the genetic

correlation between the square of gmax and fitness is perfect

(rA = S1.00; Figure Ic); that is, it is a genetic relationship that can only

be detected if the expectation of apparent stabilizing selection is

explicitly considered.

Taking this approach a step further, the genetic covariance between

the squared deviations from the population mean (m) of two metric

traits is related to the mean number of pleiotropic deleterious alleles

(k̄) carried by individuals by Equation VI [4]:

1

k
¼

sðzi�mi Þ2ðz j�m j Þ2

s2
ðzi�mi Þs

2
: [Eqn VI]

If individuals on average carry a single deleterious allele that affects

both traits, then individuals with phenotypes that deviate substan-

tially from the population mean for zi will also have extreme

phenotypes for zj and the genetic correlation will be high. However,

if individuals carry a larger number of deleterious alleles, the genetic

correlation will be weaker (e.g. Figure 1c, main text).
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Figure I. Scatterplots of (a) phenotypic gmax scores and fitness; (b) breeding values for gmax and breeding values for fitness and; (c) breeding values for the squared

deviations of gmax and breeding values for fitness. Although all ten individuals have phenotypic gmax scores, only the five sires have breeding values for gmax. Breeding

values are mean centered.
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typic evolution, describing the direction in multivariate
trait space expected to have a substantial impact on the
response to selection and, consequently, on phenotypic
divergence [13,30–32]. Here, we suggest that gmax also
provides an informative indirect metric for studying fitness
itself. The gmax of a set of standard metric traits is itself a
metric trait; as illustrated in Box 3, individual phenotypic
scores can be generated for gmax, and these scores can then
be analyzed in the same manner as any other metric trait.
As with all metric traits, much of the genetic variation
captured by gmaxmust ultimately have its source in mildly
deleterious mutations occurring across the genome [26]. In
comparison with a standard metric trait, such as those
measured to estimate G, gmax is expected to capture a
greater portion of the accumulated pleiotropic mutation in
a set of traits, including mutations with pleiotropic effects
on fitness. Consequently, strong stabilizing selection
should be generated on gmax, providing the opportunity
to investigate the genetic basis of fitness using this simple
summary statistic.

Although the distinction between real and apparent
stabilizing selection is immaterial to the evolutionary fate
of alleles [10], it has important consequences for the em-
pirical investigation of selection on gmax. Given that wide-
spread pleiotropy leads to the expectation that most traits
will be under apparent, rather than real stabilizing selec-
tion, we expect stabilizing selection on the genetic variance
of gmax to be a general observation across all the types of
metric trait for which gmax might be estimated. However,
because selection will be apparent (generated through
pleiotropic genetic covariation with fitness) rather than
real (generated through phenotypic covariation with fit-
ness), detection of stabilizing selection on the phenotypic
values of gmax depends on at least two other factors:
whether the traits that are the direct targets of selection
have been included in the analysis (Box 1), and how the
environment contributes to phenotypes. We emphasize
this important distinction between analyses of phenotypic
and genetic variance in gmax below.

Empirical approaches for uncovering fitness optima
using gmax

When phenotypic gmax scores and a component of fitness
are measured for the same individuals there are two ways
in which apparent stabilizing selection on gmax can be
revealed to identify fitness optima. First, less genetic
variance in gmax among individuals with high (rather than
low) values of the fitness component is direct evidence for
stabilizing selection on the genetic variance associated
with gmax. Second, genetic analyses involving the squared
25
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Figure 1. Examples of empirical visualization of fitness optima through the genetic

analysis of gmax. Male Drosophila bunnanda from a half-sib quantitative genetic

breeding design were assayed for a dichotomous fitness component, competitive

mating success, nine cuticular hydrocarbons (CHCs; used as sexual signals [33])

and for nine wing traits (not used as sexual signals) [55]. The major axis of genetic

variance was estimated for these two trait sets: CHCgmax [33] and Winggmax [55]

and used to generate individual scores for each gmax. (a) Differences in genetic

variance of CHCgmax in high versus low fitness (i.e. successful versus unsuccessful

in gaining mates) males, indicating that variance-reducing (stabilizing) selection is

acting on gmax. (b) Thin-plate spline representations of the stabilizing selection

acting on genetic values (mean centered breeding values) of both CHCgmax and

Opinion Trends in Ecology and Evolution January 2011, Vol. 26, No. 1
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trait deviations of gmax can be used to infer stabilizing
selection, and estimate the genetic variance in fitness. We
detail these approaches in the following sections.

Reduced genetic variance of gmax among high fitness

individuals

One straightforward approach to visualizing the selective
optimum is to use fitness components that are dichoto-
mous, such as mating success or survival, to classify indi-
viduals into high and low fitness groups. Phenotypic scores
for each individual for gmax of a set ofmetric traits can then
be subject to genetic analysis separately for high and low
fitness subsets of the population. Low fitness individuals
are expected to have more extreme genetic values of gmax,
resulting in greater genetic variance in scores of gmax

among the set of low fitness individuals than among the
set of high fitness individuals.

Just such a pattern has been observed in a population of
Drosophila bunnanda [33] (Figure 1a). Male D. bunnanda
with low fitness (categorized by low competitive mating
success) had nearly twice the genetic variance in gmax as
the subset of the population with high fitness. Further-
more, gmax was the trait combination that differed most in
genetic variance between the two fitness groups [33]. Esti-
mated breeding values for gmax can then be used to visu-
alize the adaptive optimum of gmax (Figure 1b).

In our D. bunnanda example of stabilizing selection on
the genetic variance of gmax, there was no stabilizing (or
directional) selection on the gmax phenotypes [33]. This
study therefore illustrates the necessity of genetic, not
phenotypic, analyses of selection on gmax. Confounding
effects of environment on detecting selection in evolution-
ary studies are well known [34,35], and it has often been
assumed that the environment will generate correlations
between traits and fitness, resulting in the detection of
selection that has no evolutionary consequence [36]. The
contrary pattern, where the environment obscures the
genetic correlation with fitness, is also likely to occur, as
in our example. In particular, for genotypes close to the
adaptive optimum, random environmental effects will shift
the phenotype away from the optimum, but for genotypes
far from the optimum, the environmental contribution
could shift phenotypes toward the optimum as well as
further away from it. This is analogous to theory that
shows that the probability that a mutation moves a geno-
type closer to or further away from an optimum is a
function of how close the genotype is to the optimum
[37]. Irrespective of the specific mechanism masking the
association between fitness and gmax at the phenotypic
level, we suggest that phenotypic values of gmax will often
Winggmax, for successful (open circles) and unsuccessful (closed circles) males,

illustrating the position of the selective optimum for both gmax trait combinations.

(c) The distribution of sire means for the squared deviations from the optimum of

the gmax for the two trait sets. The covariation between two gmax can indicate

whether alleles affecting gmax are either common or rare. The weak association

here suggests that the specific pleiotropic mutations affecting fitness and gmax

differed between the two trait sets. No sire means appear in the top right-hand

quadrant of this space, which represents phenotypes that are far from the fitness

optimum on both gmax. The absence of genetic variants affecting both Winggmax

and CHCgmax suggests that either pre-adult selection against widespread

pleiotropic mutations is strong or the mutation rate for alleles with widespread

effects is low.



Opinion Trends in Ecology and Evolution January 2011, Vol. 26, No. 1
be uninformative of the fitness optimum, and emphasize
that if researchers are to understand fitness optima, ex-
perimental designs must enable selection to be detected on
the genetic variance. That is, it is unlikely to be sufficient to
take the index for gmax from one population where a
breeding design has been conducted, and apply this to
the phenotypic values of another population to look for
associations between fitness and gmax in the second popu-
lation.

Genetic analysis of squared trait deviations

The second type of approach using gmax involves the
genetic analysis of the squared deviations of gmax to deter-
mine both the presence of a fitness optimum and the
genetic variance in fitness, as first suggested by Wright
[38]. Squared deviations from the population mean under-
pin phenotypic analyses of stabilizing selection (Box 1), but
their role in genetic analyses has not been widely appre-
ciated. There are three distinct analytical approaches that
are applicable to the squared deviations of gmax, providing
different insights into the nature of the fitness optimum.

First, fitness components measured on a continuous
(rather than dichotomous) scale can be genetically corre-
lated with the square of the gmax scores of individuals. We
illustrate this approach with a hypothetical example in
Box 3. This example again illustrates the distinction be-
tween phenotypic and genetic analyses of gmax scores. The
phenotype of gmax is under strong stabilizing selection
(Box 3, Figure Ia), whereas the genetic correlation of this
trait with fitness is small (Box 3, Figure Ib). That is, the
standard quantitative genetic approach, based on the ge-
netic analysis of gmax scores, failed to detect the strong
association with fitness because low fitness was associated
with both high and low gmax scores owing to individuals
deviating in both directions from the optimum. In this case,
the detection of stabilizing selection at the genetic level
depends on the analysis of squared deviations; the genetic
correlation between the squared deviations of gmax and
fitness was perfect and negative (Box 3, Figure Ic). Geno-
types with gmax scores far from the optimum have lower
fitness than do genotypes closer to the optimum (with
smaller squared deviations). We are unaware of any em-
pirical examples of this approach.

Second, in the presence of a fitness optimum, the genetic
variance in fitness itself can be estimated as the genetic
variance in the squared deviations [4]. This representation
of the genetic variance in fitness does not depend on the
traits underlying gmax having a direct effect on fitness.
Information on the genetic variance in fitness can therefore
be gained from genetic analyses of squared deviations of
gmax in the absence of any further information on exactly
what phenotypic traits are involved in conferring high
fitness. A conceptual shift from single-trait-centric
approaches toward genetic analyses of gmax could provide
a useful avenue for furthering understanding of the evolu-
tion of fitness.

Third, the genetic covariance between the squared
deviations of different traits (Box 3) can help distinguish
between two alternative mutational models [4]. If multiple
alleles contribute variation to gmax [39], additive-by-addi-
tive epistasis in fitness will be common [40], and fitness
will be affected by combinations of mutations. High non-
additive relative to additive genetic variance of squared
deviations of gmax would support this model [40], as would
relatively low genetic covariance between the squared
deviations of different traits (Figure 1c), indicating differ-
ent alleles contributed to gmax deviations of different trait
sets. Alternatively, a substantial proportion of the genetic
variance in gmax among low fitness individuals might be
due to few mutations of large effect [3]. For example, if
individuals carry at most one deleterious mutation, then
an individual with an extreme value of one trait will also be
extreme for other traits, resulting in a high genetic corre-
lation between the squared deviations of gmax traits.

Finally, we suggest that investigations of the mutation-
al variance of the squared deviations of gmax could provide
a valuable insight into the rate of mutations affecting
fitness. Mutational genetic variance increases with trait
complexity [41], and major axes of genetic variance might
represent larger mutational targets than would individual
metric traits. Recent molecular evidence suggests that
phenotype-based mutation estimates underestimated the
rate of deleterious mutations [42], perhaps through diffi-
culties in characterizing the phenotype. The relationship
between gmax and fitness optima might lead to greater
insight into the mutational input to fitness.

General implications of apparent stabilizing selection
on gmax

The detection of strong apparent stabilizing selection on
the traits that harbor the greatest levels of genetic vari-
ance (i.e. gmax of trait sets) provides a new empirical focus
for investigating the maintenance of genetic variance and
the operation of selection. Characterizing fitness optima
through the apparent stabilizing selection on gmax might
provide one way of circumventing the problem of how to
measure themyriad of traits that influence fitness. Genetic
analysis of the squared deviations of traits under apparent
stabilizing selection provides a measure of the genetic
variance in fitness, and has the potential to help distin-
guish between key theoretical models of the maintenance
of genetic variation.

An important, but untested, assumption of this ap-
proach to revealing fitness optima through stabilizing
selection on gmax is that information on total fitness is
not required. Pleiotropic mutations are expected to result
in the simultaneous depression of different aspects of
fitness. This expectation is supported by the observation
that mutational correlations among life-history traits tend
to be large and positive [43] and that inbreeding depression
has general effects across life-history traits [44,45]. There-
fore, we suggest that many individual fitness components
will be informative of the fitness optimum when analyzed
in conjunction with gmax. We again emphasize that this
expectation depends on the genetic rather than phenotypic
analysis of gmax scores.

Two avenues of empirical investigation are suggested.
First, tests are needed of the prediction that apparent
stabilizing selection on gmax is a general phenomenon.
This can be done using the analytical approaches outlined
above. An important component of these empirical tests
will be to determine how different fitness components are
27
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genetically associated with gmax, testing the expectation
that different fitness components will all be informative.
Second, empirical tests are needed of the prediction that
gmax captures much of the genetic load in complex pheno-
types. Such tests can be achieved through mutation accu-
mulation experiments; as mutations accumulate, more
extreme values of gmax should become more common. It
might also be informative to address genetic load through
studies of inbreeding depression: deviations in gmax should
be particularly strongly correlated with inbreeding depres-
sion.

Finally, analysis of stabilizing selection on gmax has the
potential to further understanding of specific evolutionary
problems that require information on the genetic variance
in fitness. For example, the targeting by natural and sexual
selection of the same genetic variants has important impli-
cations for several evolutionary issues, including the evo-
lution of sex [46,47], local adaptation [48,49], population
fitness [24] and sexual selection [50]. Individuals carrying
extreme genotypes for gmax should have lower fitness
under natural selection as a consequence of pleiotropic
mutation, and lower fitness under sexual selection if mat-
ing success is affected by genetic load [24,50,51]. Evidence
is generally lacking that mating success co-varies with the
presence of deleterious alleles. A few studies have demon-
strated that females can discriminate against artificially
introduced deleterious mutations of large effect [52,53], or
the more widespread effects of mutation induced by muta-
gens [54]. The apparent stabilizing selection on gmax

detected in D. bunnanda [33] suggests that females can
discriminate against mates carrying greater numbers of
the deleterious alleles that segregate naturally in popula-
tions. Further studies adopting similar approaches will
determine whether this alignment of natural and sexual
selection is a general phenomenon.

Acknowledgments
We thank A. Agrawal, S. Chenoweth, E. Hine, D. Houle and J.
Stinchcombe for discussions and comments on previous versions of the
article, and E. Hine for help with figures. The article was greatly
improved through comments from three anonymous reviewers and B.
Walsh. K.M. and M.W.B. are funded by the Australian Research Council;
L.R. is funded by the Canadian Natural Sciences and Engineering
Research Council.

References
1 Houle, D. (2010) Numbering the hairs on our heads: the shared

challenge and promise of phenomics. Proc. Natl. Acad. Sci. U. S. A.
107, 1793–1799

2 Lande, R. (1980) The genetic covariances between characters
maintained by pleiotropic mutations. Genetics 94, 203–215

3 Turelli, M. (1985) Effects of pleiotropy on predictions concerning
mutation-selection balance for polygenic traits. Genetics 111, 165–

195
4 Barton, N.H. (1990) Pleiotropic models of quantitative variation.

Genetics 124, 773–782
5 Lande, R. and Arnold, S.J. (1983) The measurement of selection on

correlated characters. Evolution 37, 110–126
6 Phillips, P.C. and Arnold, S.J. (1989) Visualizing multivariate

selection. Evolution 43, 1209–1222
7 Blows, M.W. (2007) A tale of two matrices: multivariate approaches in

evolutionary biology. J. Evol. Biol. 20, 1–8
8 Walsh, B. and Blows, M.W. (2009) Abundant genetic variation + strong

selection = multivariate genetic constraints: a geometric view of
adaptation. Annu. Rev. Ecol. Evol. Syst. 40, 41–59
28
9 Keightley, P.D. and Hill, W.G. (1990) Variation maintained in
quantitative traits with mutation selection balance: pleiotropic side-
effects on fitness traits. Proc. R. Soc. Lond. B. Biol. Sci. 242, 95–100

10 Johnson, T. and Barton, N. (2005) Theoretical models of selection and
mutation on quantitative traits. Philos. Trans. R. Soc. Lond. B. Biol.
Sci. 360, 1411–1425

11 Zhang, X.S. and Hill, W.G. (2005) Genetic variability under mutation
selection balance. Trends Ecol. Evol. 20, 468–470

12 Eyre-Walker, A. (2010) Genetic architecture of a complex trait and its
implications for fitness and genome-wide association studies. Proc.
Natl. Acad. Sci. U. S. A. 107, 1752–1756

13 Hansen, T.F. and Houle, D. (2008) Measuring and comparing
evolvability and constraint in multivariate characters. J. Evol. Biol.
21, 1201–1219

14 Kirkpatrick, M. (2009) Patterns of quantitative genetic variation in
multiple dimensions. Genetica 136, 271–284

15 Hunt, J. et al. (2004) What is genetic quality? Trends Ecol. Evol. 19,
329–333

16 Metcalf, C.J.E. and Pavard, S. (2007) Why evolutionary biologists
should be demographers. Trends Ecol. Evol. 22, 205–212

17 Moller, A.P. (1990) Fluctuating asymmerty in male sexual ornaments
may reliably reveal male quality. Anim. Behav. 40, 1185–1187

18 David, P. (1998) Heterozygosity–fitness correlations: new perspectives
on old problems. Heredity 80, 531–537

19 Lynch, M. and Walsh, B. (1998) Genetics and Analysis of Quantitative
Traits, Sinauer Associates

20 Zahavi, A. (1975) Mate selection: selection for a handicap. J. Theor.
Biol. 53, 205–214

21 Iwasa, Y. et al. (1991) The evolution of costly mate preferences. II. The
handicap principle. Evolution 45, 1431–1442

22 Polak, M. (2008) The developmental instability – sexual selection
hypothesis: a general evaluation and case study. Evol. Biol. 35, 208–

230
23 Chapman, J.R. et al. (2009) A quantitative review of heterozygosity–

fitness correlations in animal populations. Mol. Ecol. 18, 2746–2765
24 Whitlock, M.C. and Agrawal, A.F. (2009) Purging the genome with

sexual selection: reducing mutation load through selection on males.
Evolution 63, 569–582

25 Robertson, A. (1966) A mathematical model of culling process in dairy
cattle. Anim. Prod. 8, 95–108

26 Halligan, D.L. and Keightley, P.D. (2009) Spontaneous mutation
accumulation studies in evolutionary genetics. Annu. Rev. Ecol.
Evol. Syst. 40, 151–172

27 Lyman, R.F. et al. (1996) Effects of single P-element insertions on
bristle number and viability inDrosophila melanogaster.Genetics 143,
277–292

28 Blows, M.W. and Brooks, R. (2003) Measuring nonlinear selection. Am.
Nat. 162, 815–820

29 Griswold, C.K. et al. (2007) Neutral evolution of multiple quantitative
characters: a genealogical approach. Genetics 176, 455–466

30 Lande, R. (1979) Quantitative genetic analysis of multivariate
evolution, applied to brain:body size allometry. Evolution 33, 402–416

31 Schluter, D. (1996) Adaptive radiation along genetic lines of least
resistance. Evolution 50, 1766–1774

32 Chenoweth, S.F. et al. (2010) The contribution of selection and genetic
constraints to phenotypic divergence. Am. Nat. 175, 186–196

33 McGuigan, K. and Blows, M.W. (2009) Asymmetry of genetic variation
in fitness-related traits: apparent stabilizing selection on gmax.
Evolution 63, 2838–2847

34 Rausher, M.D. (1992) The measurement of selection on quantitative
traits: biases due to environmental covariances between traits and
fitness. Evolution 46, 616–626

35 Stinchcombe, J.R. et al. (2002) Testing for environmentally induced
bias in phenotypic estimates of natural selection: theory and practice.
Am. Nat. 160, 511–523

36 Pemberton, J.M. (2010) Evolution of quantitative traits in the wild:
mind the ecology. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2431–

2438
37 Fisher, R.A. (1930) The Genetical Theory of Natural Selection,

Clarendon Press
38 Wright, S. (1935) The analysis of variance and the correlations between

relatives with respect to deviations from an optimum. J. Genet. 30,
243–256



Opinion Trends in Ecology and Evolution January 2011, Vol. 26, No. 1
39 Lande, R. (1975) Maintenance of genetic variability by mutation in a
polygenic character with linked loci. Genet. Res. 26, 221–235

40 Tachida, H. and Cockerham, C.C. (1988) Variance components of
fitness under stabilizing selection. Genet. Res. 51, 47–53

41 Houle, D. et al. (1996) Comparing mutational variabilities. Genetics
143, 1467–1483

42 Haag-Liautard, C. et al. (2007) Direct estimation of per nucleotide
and genomic deleterious mutation rates in Drosophila. Nature 445,
82–85

43 Houle, D. et al. (1994) The effects of spontaneous mutation on
quantitative traits .1. Variances and covariances of life history
traits. Genetics 138, 773–785

44 Charlesworth, D. and Willis, J.H. (2009) The genetics of inbreeding
depression. Nat. Rev. Genet. 10, 783–796

45 Tomkins, J.L. et al. (2010) Additive genetic breeding values correlate
with the load of partially deleterious mutations. Science 328, 892–894

46 Agrawal, A.F. (2001) Sexual selection and the maintenance of sexual
reproduction. Nature 411, 692–695

47 Siller, S. (2001) Sexual selection and the maintenance of sex. Nature
411, 689–692
48 Lorch, P.D. et al. (2003) Condition-dependent sexual selection can
accelerate adaptation. Evol. Ecol. Res. 5, 867–881

49 Candolin, M. and Heuschele, J. (2008) Is sexual selection beneficial
during adaptation to environmental change? Trends Ecol. Evol. 23,
446–452

50 Rowe, L. and Houle, D. (1996) The lek paradox and the capture of
genetic variance by condition dependent traits. Proc. R. Soc. Lond. B.
Biol. Sci. 263, 1415–1421

51 Tomkins, J.L. et al. (2004) Genic capture and resolving the lek paradox.
Trends Ecol. Evol. 19, 323–328

52 Sharp, N.P. and Agrawal, A.F. (2008) Mating density and the strength
of sexual selection against deleterious alleles in Drosophila
melanogaster. Evolution 62, 857–867

53 Hollis, B. et al. (2009) Sexual selection accelerates the elimination of a
deleterious mutant inDrosophila melanogaster. Evolution 63, 324–333

54 Radwan, J. (2004) Effectiveness of sexual selection in removing
mutations induced with ionizing radiation. Ecol. Lett. 7, 1149–1154

55 McGuigan, K. and Blows, M.W. (2010) Evolvability of individual traits
in a multivariate context: Partitioning the additive genetic variance
into common and specific components. Evolution 64, 1899–1911
29


	Pleiotropy, apparent stabilizing selection and uncovering fitness optima
	Multivariate evolution and the problem of measuring fitness
	Pleiotropy and apparent stabilizing selection
	Pleiotropy and gmax as a summary of multivariate genetic variance
	Empirical approaches for uncovering fitness optima using gmax
	Reduced genetic variance of gmax among high fitness individuals
	Genetic analysis of squared trait deviations

	General implications of apparent stabilizing selection on gmax
	Acknowledgments
	References


