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Summary

Whether the changes brought about by sexual selection are,
on the whole, congruent or incongruent with the changes

favored by natural selection is a fundamentally important
question in evolutionary biology. Although a number of

theoretical models have assumed that sexual selection rein-
forces natural selection [1, 2], others assume these forces

are in opposition [3–5]. Empirical results have been mixed
(see reviews in [1, 6–8]) and the reasons for the differences

among studies are unclear. Variable outcomes are expected
if populations differ in their evolutionary histories and there-

fore harbor different amounts and types of segregating
genetic variation. Here, we constructed populations of

Drosophila melanogaster that differed in this regard to
directly test this hypothesis. In well-adapted populations,

sexually successful males sired unfit daughters, indicating
sexual and natural selection are in conflict. However, in pop-

ulations containing an influx of maladaptive alleles, attrac-
tive males sired offspring of high fitness, suggesting that

sexual selection reinforces natural selection. Taken

together, these results emphasize the importance of evolu-
tionary history on the outcome of sexual selection. Conse-

quently, studies based on laboratory populations, cultured
for prolonged periods under homogeneous conditions,

may provide a skewed perspective on the relationship
between sexual and natural selection.

Results

We compared the effects of sexual selection on fitness in repli-
cate populations close to their adaptive peaks (‘‘peak popula-
tions’’) and in populations pushed off their peak by an influx of
migrant alleles (‘‘off-peak populations’’). Our peak popula-
tions, consisted of three replicate populations of Drosophila
melanogaster that were well-adapted to cadmium-containing
media, whereas our off-peak populations consisted of three
replicate F2 populations created by crossing each of the
cadmium-adapted populations with populations adapted to
ethanol-containing media. These experimental populations
are meant to bracket the range of possibilities of natural
populations, some of which will have largely fixed adaptive
variants, whereas in others such variants segregate at interme-
diate frequency. In each population, we identified sexually
successful and sexually unsuccessful males, and used them
to sire offspring that were raised in a competitive environment
and assayed for viability, development and fitness (see
Supplemental Experimental Procedures available online).
*Correspondence: tlong@wlu.ca
Our key prediction was that sexually successful males in off-
peak populations would sire fitter offspring of both sexes,
however, in peakpopulations, suchmalesmaysire unfitdaugh-
ters because sexually antagonistic alleles are expected to
make a relatively greater contribution to the genetic variance
in fitness.Our analysis of daughter fitness revealeda significant
interaction effect between evolutionary history and sire
success status (likelihood ratio test: c2 = 33.9, df = 1, p <
0.0001). This indicates that the difference in fitness between
daughters sired by successful and unsuccessful males varies
between peak and off-peak populations. In fact, the data
show that the genetic consequences of being sired by
a successful male differs in sign between populations of
different evolutionary histories (Figure 1). In off-peak popula-
tions, daughters sired by successful males were significantly
more fit than those sired by unsuccessful males (c2 = 27.1,
df=1,p<0.0001). Incontrast, thedaughterssiredbysuccessful
males in peak populations were significantly less fit than those
sired by unsuccessful males (c2 = 8.0, df = 1, p = 0.0046). These
results are consistent with the hypothesis that sexually antago-
nistic variation dominates in our peak populations but sexually
congruent variation dominates in our off-peak populations.
In both peak and off-peak populations, we expected

successful males to sire successful sons, thoughwe predicted
the effect to be larger in off-peak populations simply because
of the additional abundance of ‘‘good genes’’ type variation.
Consistent with this, we found that evolutionary history
affected the genetic benefits to sons (Figure 2). Specifically,
therewasasignificant interactionbetweenevolutionary history
and sire success status in the analysis of son fitness similar
to that seen in the analysis of daughter fitness (c2 = 5.9, df = 1,
p =0.0151). In the off-peak populations, sons siredby success-
ful males were significantly more fit than those sired by unsuc-
cessfulmales (c2 =14.3, df =1, p=0.0002).Unexpectedly, there
were no significant differences in the reproductive success
of sons of successful versus unsuccessful males in any of the
peak populations (c2 = 0.49, df = 1, p = 0.48).
In addition to measuring adult fitness components, we

measured juvenile survivorshipamong theoffspringofsuccess-
ful and unsuccessful males. There was no significant effect of
population history, sire success status, or their interaction on
egg-to-adult survivorship (see Supplemental Results). We also
measured development time and found no significant interac-
tion between evolutionary history and sire success status (see
Supplemental Results).Wedid finda significant effect of history
on development time with both sons and daughters in peak
populations developing more quickly than those from off-peak
populations (sons: c2 = 11.0, df = 1, p = 0.0009; daughters:
c2 = 8.6, df = 1, p = 0.0034). We found an even smaller, though
still significant, effect of sire success status on both son and
daughter development times (sons: c2 = 56.0, df = 1, p <
0.0001; daughters: c2 = 45.5, df = 1, p < 0.0001) with successful
sires producing more slowly developing offspring.

Discussion

Over a century and a half after sexual selection was first
conceptualized [9], it still remains unclear whether sexually
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A B Figure 1. Effects of Sexual Selection and Evolu-

tionary History on the Fitness of Female Offspring

Mean fitness of D. melanogaster daughters sired

by sexually ‘‘unsuccessful’’ and ‘‘successful’’

males in three replicate off-peak (A) and peak

(B) populations, estimated from the statistical

model. Error bars indicate 95% confidence

interval determined by bootstrapping over the

residuals.
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successful males sire fit offspring of one or both sexes. This
uncertainty hinges on whether or not sexual and natural selec-
tion act in the same direction, and arises from another central
problem in evolutionary biology; what maintains genetic varia-
tion in fitness? In the context of sexual selection, there are two
alternative perspectives. From one perspective, variation is
maintained by a constant input of deleterious alleles through
mutation, migration, or environmental change (which effec-
tively changes adapted alleles into nonadapted ones). If
mating success is biased against maladaptive alleles, what-
ever their origin, then sexual and natural selection will be
congruent (‘‘good genes’’ theory): males who are favored by
sexual selection carry alleles also favored by natural selection
and will therefore sire both sons and daughters of high fitness
[1, 2, 10]. This hypothesis has support from a variety of theoret-
ical models that have shown how sexual selection may
enhance a species’ overall fitness by increasing the rate of
adaptation to novel environments [11, 12], the speed at which
beneficial mutations are fixed and deleterious mutations are
purged [13], thereby lessening the costs associated with
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sexual reproduction [14–16]. The alter-
nate perspective is rooted on the
long-standing [17] observation that
that sexually selected traits come at
a cost under natural selection, and the
two processes are frequently in conflict.
Under this scenario, maladaptive alleles
are rare and make little contribution
to the standing variation. Instead,
much of the variation in fitness arises
from sexual antagonism maintaining
alternative alleles at intermediate frequency. Here, those
alleles that make males successful are deleterious when ex-
pressed in daughters (e.g., [18–20]), so that sexual and natural
selection are in opposition [3–5].
Both of these ideas are almost certainly true for some frac-

tion of the genome [2, 21]. Therefore, the effects of sexual
selection on fitness will ultimately depend on the nature of
genetic variation present in a given population. For instance,
a closed populationwith a long and consistent history of selec-
tion in a stable environment may be expected to be close to its
adaptive peak and will have largely cleared most maladaptive
alleles. Consequently, the primary contributor to genetic vari-
ation in fitnessmay then be those allelesmaintained by various
forms of balancing selection, including intralocus conflict. In
such a population, we expect sexual and natural selection to
be incongruent. However, many natural populations will not
be so close to their adaptive peaks, either because of natural
environmental fluctuations [22–25] or because of an influx of
maladaptive alleles through migration [26]. In these popula-
tions the comparatively high frequency of maladaptive alleles
Figure 2. Effects of Sexual Selection and Evolu-

tionary History on the Fitness of Male Offspring

Mean fitness of D. melanogaster sons sired by

sexually ‘‘unsuccessful’’ and ‘‘successful’’ males

in three replicate off-peak (A) and peak (B) popu-

lations, estimated from the statistical model.

Error bars indicate 95% confidence interval

determined by bootstrapping over the residuals.
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will tend to make sexual selection concordant with natural
selection through the ‘‘good genes’’ process.

Our study represents a formal test of the hypothesis that the
effects of sexual selection on fitness depend on the type of
variation in the population under study. Here, we mimicked
populations with very different histories in an attempt to
bracket the range of possibilities in nature, enabling us to
assess the alternatives within a single experimental frame-
work. Our results demonstrate that across this range, the indi-
rect genetic effects of sexual selection are dramatically
different. In our peak populations, where unconditionally dele-
terious alleles should have been whittled away by constant
selection in a homogenous environment, we expected sexual
antagonism to make a large contribution to standing variation.
Consistent with this, successful males produced unfit daugh-
ters. In our off-peak populations, maladaptive alleles are
making a larger contribution to the genetic variance. In these
populations, successful males produced fit offspring of both
sexes.

The observed difference in the effects of sexual selection is
attributable to differences between populations in males
rather than females. In the assays we used to classify males
as sexually successful or unsuccessful, each focal male
competed against a male from a common competitor stock
for a female from another common competitor stock. Because
‘‘success’’ was measured in this common social environment,
we can eliminate the possibility that the difference between
treatments emerged because female preference changed.
The question then arises what makes males successful in
peak and off-peak populations that leads to differences in
the effects of sexual selection? One possibility is that males
in the two types of populations may differ in the traits they
express (in means and/or variances), thus changing what is
available to be sorted by sexual selection. A second possibility
is that, in both population types, sexual selection favors a
common trait, such as condition, but that condition has a
different genetic make-up in the peak and off-peak popula-
tions. Male condition may be comprised of the combined
effects of sexually antagonistic and sexually congruent alleles
and the balance of these two differs between peak and off-
peak populations.

One curious result was that in off-peak populations,
successful males sired high-fitness sons, whereas in peak
populations, successful males sired sons of average fitness.
Why was there no correlation in fitness between males and
their sons in peak populations? One intriguing possibility is
based on intralocus conflict theory, which predicts that loci
segregating for sexually antagonistic effects will be preferen-
tially located on the X chromosome [27] (but see [28]). This
prediction has received some support in lab-adapted popula-
tions of D. melanogaster [29, 30]. If substantial antagonistic
variation is located on the X, successful males will transmit
this chromosome to their daughters, depressing their fitness,
but not to their sons. This predicted pattern is consistent
with our data.

The observation that offspring sired by successful males
developed more slowly than those sired by unsuccessful
males was also unexpected. It may be better for males to
take slightly longer to develop if slower development yields
better-quality adults. There may be little selection against
minor delays in development provided that eclosion occurs
before some threshold time (i.e., when the egg-laying vials
for the next generation are presented). Furthermore, develop-
ment time is sexually dimorphic in D. melanogaster [31] and
there has been some suggestion that there are male-specific
fitness benefits associated with a slower maturation rates,
possiblymediated by gonadal development [32]. This interpre-
tation is supported in experimentally evolved populations
where female-specific selection was removed and the result-
ing ‘‘masculinized’’ genomes produced phenotypes that
were characterized by longer development times [33].
The results of our study may help to reconcile many of the

apparent contradictions in the empirical literature and help
answer the fundamentally important question of whether
sexual selection is of net benefit to a species’ evolution.
Over the last 30 years there have been many studies that
have examined whether sexual and natural selection act
concordantly (see reviews in [1, 6–8]). The results have been
mixed, but the reasons for this variation are unknown, because
these studies vary in a large number of dimensions (e.g., study
organism, experimental design, fitness metrics, selective
history, etc.). If our hypothesis is correct, then much of this
variation among studies may be accounted for by the amount
and type of segregating variation in fitness. For example, the
artificial introduction of new genetic variation with adverse
effect(s) into a population, either by starting with an initially
genetically variable population [34–36], backcrossing [37],
mutation accumulation [38], or mutagenesis [39–41], may
make the individuals off-peak with respect to their normal
culture environment. Several of these aforementioned studies
[34, 35, 37, 39, 40] have detected positive associations with
sexual selection and fitness (or its major components) (but
see [38] and [41] for exceptions). Likewise, the detection of a
significant offspring viability benefit associated with mate
choice observed by Partridge [42], but not detectable many
years later in the same lab population of D. melanogaster
[43], might be the unanticipated consequence of selection
acting on genetic variation during the hundreds of generations
that elapsed between these two studies. Additional scrutiny of
the likely genetic diversity and composition of laboratory
based studies that have shown no indirect benefits of
nonrandom mating (e.g., [44, 45]) may be warranted.
In principle, an off-peak population can be created by

placing a population in a new environment. For instance,
Fricke and Arnqvist [36] compared the effects of sexual selec-
tion in experimental populations of seed beetles (initially
created by mixing three populations of distinct geographic
origin five generations prior to the start of the experimental
evolution) that had been evolving either in their standard envi-
ronment or on a novel host. Sexual selection accelerated
adaptation in the novel environment but the effects of sexual
selection were negative in the ancestral environment. How-
ever, not all studies examining populations in novel environ-
ments have found benefits to sexual selection [46–48]. There
are several difficulties in interpreting these opposing results.
First, many studies examine the combined effects of intra-
and interlocus effects by measuring the productivity of male-
female pairs, which is appropriate when assessing the net
effect of sexual selection on population-level absolute fitness.
The effects of the interlocus conflict (i.e., males and females
directly harming one another) on a female’s reproductive
output can be large but are not relevant to the question of
whether successful males sire fit offspring of one or both
sexes. By directly assessing the fitness of a male’s offspring,
we have focused on the genetic benefits (or lack thereof)
conferred by successful males. Specifically, we are asking
whether successful males sire offspring of higher relative
fitness than unsuccessful males, regardless of the total effect
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of sexual selection on population-level absolute fitness.
Second, simply changing environments does not necessarily
change variance in the intended manner. In the ancestral envi-
ronment, deleterious alleles will be rare; some of these may be
favored in the novel environment, but they will initially
contribute little to the variance due to their rarity. Sexually
antagonistic loci will still be highly polymorphic andmay domi-
nate the variance in fitness. A related third point is that most
studies have examined the effects of sexual selection in either
the ancestral environment or a novel environment. Without
examining both together, it is impossible to determine whether
the effects of sexual selection (in either sign or magnitude)
differ between peak and off-peak populations. Finally, pheno-
typic expression of alleles may change in new environments
(G 3 E) so that both sexually antagonistic and other types of
variance will change in unpredictable ways. By directly manip-
ulating the underlying variation rather than the test environ-
ment, our study avoids the unpredictable effects of G 3 E
effects.

Our experiment was designed to span the range of possible
states of natural populations to demonstrate the importance of
evolutionary history in determining the effect of sexual selec-
tion on fitness. The results clearly show this to be the case.
However, no lab study can tell us what is typical of natural pop-
ulations. This brings us back to the crucial question of what
maintains standing genetic variation in fitness in most natural
populations. Although we have much theory, empirical work
on the genetic architecture of fitness variation in the wild has
only recently begun (e.g., [49–52]). Instead, our current under-
standing comes largely from laboratory studies; and our
research indicates that population selection history should
be taken into account when assessing the alignment of natural
and sexual selection.

Supplemental Information

Supplemental Information includes Supplemental Results and Supple-

mental Experimental Procedures and can be found with this article online

at doi:10.1016/j.cub.2011.12.020.
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