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Clear empirical evidence shows that short-term foraging behavior is influenced 
by the risk of predation (reviews in Milinski 1986; Dill 1987; Sih 1987). Organisms 
typically reduce time spent foraging or alter foraging habitats when predation risk 
increases (Stein and Magnuson 1976; Milinski and Heller 1978; Sih 1980; Lima 
1985; Gilliam and Fraser 1987). Such behavioral changes often are influenced by 
body weight and/or hunger (Cheverton et al. 1985; Stephens and Krebs 1986). 
Similar trade-offs between growth and predation risk may be implicated in onto- 
genetic niche shifts (Werner and Gilliam 1984; Werner 1986). Since ontogenetic 
niche or habitat shifts are an important component of life histories, factors 
influencing such shifts should be integrated into life-history theory (Werner and 
Gilliam 1984). 

Few models of optimal trade-offs between maximizing energy gain and minimiz- 
ing predation risk have considered habitat or patch choice over the whole or a 
large part of an organism's life history (Gilliam 1982; Werner and Gilliam 1984; 
Werner 1986). The work of Gilliam and Werner has led to the conclusion that 
fitness (net reproductive output) is maximized in pre-reproductive organisms if 
individuals choose habitats where their ratio of mortality rate (ii) to growth rate 
(g) is minimized. This "minimize pL/g" rule is attractive for its simplicity and 
intuitive insight. The derivation of the >/g rule assumes that reproduction is 
continuous and extends over an indefinite time period (Gilliam 1982). However, 
well-separated pre-reproductive and reproductive periods are common, particu- 
larly in seasonal environments. Several authors have demonstrated that short- 
term behavioral decisions may depend on time in systems where certain states 
must be achieved by certain times (Caraco 1980; Stephens 1981; McNamara and 
Houston 1982, 1986; Houston and McNamara 1985; Lucas 1985). For example, 
small birds in winter may have to achieve certain minimal net energy intake during 
the day in order to survive the nonfeeding period from dusk to dawn. Under these 
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conditions the achievement of this net intake becomes increasingly important 
relative to conflicting behaviors as dusk approaches (McNamara and Houston 
1986). 

Dynamic optimization models have recently been applied to a variety of behav- 
ioral problems (Macevicz and Oster 1976; Sibly and McFarland 1976; Iwasa et al. 
1984; Ydenberg and Houston 1986), including trade-offs between energy gain and 
predation risk (Milinski and Heller 1978; Gilliam 1982; Mangel and Clark 1986; 
McNamara and Houston 1986; Clark and Levy 1988; Houston et al. 1988; Mangel 
and Clark 1988). These dynamic foraging models assume that behavioral decisions 
depend on the state or condition of the individual making the decision. They 
predict time courses of behavior, and they allow the costs and benefits of vari- 
ous behaviors to be expressed in a common currency (Mangel and Clark 1986; 
McNamara and Houston 1986). 

The present work is concerned with habitat choice in the presence of the 
conflicting demands of energy gain and avoidance of predation. As did Gilliam 
(1982), we use a two-habitat model, and we consider ontogenetic shifts over an 
organism's life history. In contrast to Gilliam, we introduce a time constraint, by 
assuming a fixed pre-reproductive period. Given an objective of maximizing 
reproductive output at a fixed final time T, our results reveal the dependence of 
optimal foraging strategies both on the time remaining until T and on the current 
weight of an individual. A switching of habitat or behavior is predicted along a 
curve that is determined analytically in terms of the weight and habitat-dependent 
rates of growth and predation, as well as the functional dependence of reproduc- 
tive output on the final weight. Our qualitative results extend those of Werner and 
Gilliam (1984), McNamara and Houston (1986, 1987), and Mangel and Clark 
(1986), although we use a single set of assumptions that differ in detail from all of 
those works. We present a deterministic theory, in contrast to the theories of 
Mangel and Clark and of McNamara and Houston. The theory generalizes in a 
straightforward way to more than two habitats. 

ASSUMPTIONS AND PROBLEM FORMULATION 

We consider behavioral decisions of pre-reproductive foragers that can choose 
between two habitats. Each habitat is characterized by weight-dependent rates of 
energy gain and predation risk. We assume that profitable habitats (with high rates 
of energy gain) are always riskier, since otherwise there would be no conflict to be 
considered. We also assume that the final time of reproduction, T, is fixed. The 
objective of an individual forager is to survive to time T with a high potential 
reproductive output. Reproductive output is assumed to increase with weight. 

Although we confine our analysis to time periods that end with reproduction, 
our analysis and results apply to any fixed non-reproductive period in which 
future fitness (survival or reproductive success) increases with weight. Life- 
history traits that may be viewed from this perspective include the time until 
diapause in insects (Tauber et al. 1986) and pre-winter fattening in birds and 
mammals (Murie and Boag 1984; Lima 1986; Saur and Slade 1987). Similarly, we 
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may consider the aquatic stage of amphibians as a fixed time period in temporary- 
pond communities (Smith 1987; Wilbur 1987; Semlitsch et al. 1988). In these 
cases, future fitness typically increases with weight at the transition time. 

In the following analysis, we demonstrate how the optimal habitat choice 
depends on the remaining time, in the time-constrained systems described above. 
The final reproductive output is denoted by R, and R is assumed to depend on the 
final body weight W. In the following development, weight may be replaced by 
some other index of size with no effect on the theory. Body weight at earlier times 
is denoted by w, and the rate of increase of w is denoted by gh(W), in order to 
indicate that the growth rate depends on the habitat and on w. The index h denotes 
the habitat; it may take the value 1 or 2. Growth is described by 

dwldt = gh(W). (1) 

The mortality rate is also assumed to depend on w and h. Let s(w, t) denote the 
probability of surviving to time T, starting at weight w at time t. If we follow the 
growth of a single individual, then w is determined as a function of t: w = w(t). 
Since s depends on both t and w, the time derivative of s actually involves the 
variation of w, according to the chain rule of calculus. Thus, if F1h(w) denotes the 
instantaneous mortality rate in habitat h, then 

ds(w(t),t)!dt = asbat + gh(W)as!aw = h(W)S(W,Wt). (2) 

The expected reproductive output (fitness) starting at weight w at time t is 
denoted by f(w, t). According to our assumptions, the fitness is given by the 
reproductive output R at time T (assuming that an individual survives to time T) 
multiplied by the probability of survival to time T. Therefore, we have 

f(w, t) = s(w, t)R(W) . (3) 

We use the notation R(W) in order to indicate that the reproductive output 
depends on the final weight. The relationship (3) is of no direct use, since the 
habitat h must be chosen in order to specify which dynamics apply in equations 
(2). Thus, we must determine the optimal strategy (the choice of h that maximizes 
the expected fitness, f(w, t)) before or at the same time as we determine the 
fitness. It is apparent from equation (3) that the fitness depends on both w and t. 
Therefore, optimal strategies must also depend on both w and t: a stationary 
strategy (one that does not depend on time) cannot be optimal. In particular, 
strategies such as minimizing >/g cannot be optimal under our assumptions, since 
such strategies do not depend on the time elapsed or the time to a final reproduc- 
tive period. 

We characterize the optimal strategy in terms of the dynamic programming 
equation. This equation can be derived by computing the expected fitness at 
weight w at time t in terms of the expected conditions at time t + dt. In the 
interval (t, t + dt), an individual in habitat h may die, with probability v1h(w)dt, or 
may survive, with probability 1 - Fh(w)dt. In the latter case, weight gain occurs 
at the rate gh(w). The fitness at time t equals the probability of survival to time 
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t + dt multiplied by the fitness at (w + dw, t + dt). Thus, 

f(w,t) = [1 - I.h(w)dt]f(w + gh(w)dt, t + dt). (4) 

The optimal strategy at time t maximizes the right-hand side of equation (4). 
The condition for maximization of the right-hand side of equation (4) can be 

simplified as follows: if dt (the time increment) is small enough, then the chain rule 
of multivariate calculus may be applied to the functionf(w + gh(w)dt, t + dt). 
After substitution into equation (4), the result is 

f(w,t) f(w,t) + (af!at)dt + (af!aw)gh(w)dt - [Lh(w)f(w,t)dt. (5) 

After cancelingf(w, t) from each side, dividing by dt, and letting dt approach 0, the 
result is 

af/at + gh(W)af!aw - [Lh(w)f(w,t) = 0. (6) 

This equation has exactly the same form as equation (2) since, according to 
equation (3), f is just a multiple of s. Equation (6) describes the fitness function 
corresponding to any strategy that chooses the habitat h as a function of time t and 
weight w. In order to obtain the optimal strategy, we must satisfy the maximiza- 
tion condition stated along with equation (4). The optimal h (denoted by h*) must 
be chosen to maximize the part of the expression in equation (6) that depends on 
h; by definition, 

nh(W,t) = gh(w)af!aw - [Lh(w)f(w,t). (7) 

Thus, h* must maximize equation (7). The latter expression is a sum of two terms. 
The first term accounts for weight gain and its effect on final fitness. The second 
term accounts for the possibility of predation and the consequent loss of expected 
reproductive output. Since nh(w, t) depends on both t and w, h* has the same 
dependence. 

Equation (6), together with the condition that h maximize equation (7), consti- 
tutes the dynamic programming equation. Its solution is the optimal expected 
reproductive output, as a function of time elapsed and the weight of an individual. 

In Appendix A, the preceding analysis is extended to a somewhat more general 
situation in which individuals have the option of choosing the proportion of time 
spent in the respective habitats. The results obtained there show that the optimal 
strategy is to spend all available time in one or the other of the habitats. 

The analytical solution of equations (6) and (7) is obtained in Appendix A. The 
remainder of this work is a description of that result and its implications. We can 
draw some important conclusions without going through the complete solution, by 
confining our attention to the period just before the final time, T. The values of w, 
h, and nhh(w, t) at t = T are denoted by W, H, and NI,(W), respectively. At the final 
time, T, the fitness function is just the reproductive output: f(W, T) = R(W). It 
then follows from the optimality condition (7) that the final habitat choice, H*, 
must maximize 

Nh(W) = gh(W)(dR/dw)(W) - VLh(W)R(W). (8) 
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Here, dR/dw denotes the derivative of R with respect to W. The interpretation of 
equation (8) is analogous to the interpretation of equation (7), except that the for- 
aging decision is to be made just before reproduction. We next define AN(W) by 

AN(W) = N2(W) - N(W); (9a) 

AN(W) = [g2(W) - gl(W)] dR!dw - [>2(W) - [.I(W)]R(W). (9b) 

For values of Wfor which AN(W) > 0, habitat 2 is preferred according to equation 
(8); when AN(W) < 0, habitat 1 is preferred. The boundary between these cases is 
a point, W*, where 

AN(W*) = 0. (10) 

The implications of the existence of such a point are explained below. 
Now we discuss conditions under which AN(W) should vanish at some value 

W*. Our subject is interesting only if there is in fact a trade-off between foraging 
success and the avoidance of predation or other mortality factors. Therefore, 
without loss of generality, we confine ourselves to the case in which both the 
growth rate and the mortality rate are higher in one habitat than in the other; that 
is, g2(w) > g1(w) and RA2(w) > RI (w). Under these assumptions, both terms in 
brackets in equation (9) are positive, as are dR!dw and R. If the final weight, W, is 
small, the marginal gain in reproductive output per unit of weight gained is 
relatively large compared with R(W), since the reproductive output is small or 
nonexistent for small weights. However, if W is large, the marginal gain in 
reproductive output from increased weight is relatively small compared with 
R(W), since the reproductive output is large and the marginal utility of increased 
weight eventually decreases for large weights. Therefore, we expect the growth 
term in equation (9b) to dominate if W is small, and hence, habitat 2 (which favors 
growth at the expense of predation risk) should be favored if W is small. However, 
the mortality term in equation (8) should dominate if W is large, and hence, habitat 
1 should be favored, since large individuals have more to lose from predation than 
they can gain from additional weight gain. The preceding argument does not 
guarantee that /N(W) must always change sign at a plausible weight. For ex- 
ample, if pLI and p2 differ only slightly, then habitat 2 would always be favored. 
However, we confine our attention to cases in which AN does change sign. 

If t is approaching T, then the optimal strategy is to choose habitat 2 if AN(W) < 
0, that is, if W < W*, and to choose habitat 1 otherwise. It is clear that the 
switching point, W*, cannot be determined simply from a knowledge of ,u and g, 
since the quantities R and dR/dw also appear in equation (9b) and hence in 
equation (10). This provides a second argument against a strategy of minimization 
of ,u/g, in addition to its disregard of the dependence of the strategy on elapsed 
time. 

DESCRIPTION OF THE OPTIMAL STRATEGY 

More-complete details of the following discussion are given in Appendix A. 
Here we outline the construction of the optimal strategy and interpret the corre- 
sponding phenomena. 
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FIG. 1.-Optimal habitat choice for growth along five trajectories of time (t) versus weight 
(w). The ratio plg is lower in habitat 2 (fast growth) than in habitat 1. Dotted curve, The 
optimal switching curve, drawn in the w-t plane. The optimal strategy calls for foraging in 
habitat 2 (fast growth and high predation) when below the switching curve, and foraging in 
habitat 1 when above it. Note the abrupt change in growth rate as habitat switching takes 
place. 

According to equation (7), the optimal strategy is to choose the habitat h that 
maximizes nh(W, t). This implies that an individual should switch habitat at a 
weight w and time t where n2(w, t) - n1(w, t) = 0. This difference is denoted by 

A\n(w, t) = n2(w, t) - n1(w, t); (I la) 

/n(w,t) = [g2(w) - g1(w)](aflaw)(w,t) - [112(W) - 11(w)]f(w,0t) (1lb) 

We have already considered the optimal strategy at the final time, T. Near 
equation (8), W* was defined as the point on the line t = T where AN = 0. The 
optimal habitat, h*, is obtained for earlier t by drawing trajectories backward from 
the final line where t = T, as in figure 1. The trajectories to the left of W* have 
h* = h2, and those to the right of W* have h* = h1, according to criterion (7). 
Along the trajectories to the right of W*, z\n(w,t) vanishes at some point w*. 
The trajectories are continued below this point by switching from habitat 1 to hab- 
itat 2 as t decreases. 
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We call the dotted curve in figure 1 the switching curve, that is, the curve in the 
w-t plane where the net rates of change in fitness from foraging in the two 
habitats are equal: /\n(w, t) = 0. According to Appendix A, /n(w, t) = 0, where 

Gh AN + Q=q (12) 
G2- G1 R 

The quantities Gh, GI, G2, and Q refer to the values at t = T and w = W of gh, g1, 
g2, and q, respectively. The quantity q(w) is defined by 

q(w) - [LA2(W) RI (w)1 [ 1 _ 11 (13) 
[92(W) g I(w) [g I(w) 92 (W) 

Expressions (12) and (13) are complex, but they can be interpreted in terms of 
more-basic quantities. In order to facilitate such interpretation, we may multiply 
both numerator and denominator in expression (13) by a small weight change, dw. 
The quantity dwlg is the increment in weight multiplied by the rate of change of 
time with respect to weight gain, that is, the increment in time for a given weight 
gain. Therefore, after multiplication by dw, the denominator in expression (13) 
may be interpreted as the difference in time required for a given increment in 
weight in the two habitats. The ratio ,ulg in the numerator may be interpreted as 
the ratio of mortality increment to weight increment. Therefore, after multiplica- 
tion by dw, the numerator in expression (13) is the difference in mortality incre- 
ment in the two habitats. Thus, q(w) may be interpreted as the difference in the 
increments of mortality, divided by the difference in increments in time in the two 
habitats. Turning now to expression (12), the quantities Q and q may be inter- 
preted according to the preceding. The first term consists of a weighting factor 
involving the ratio of the values of the growth rate G and the reproductive output 
R, multiplied by /\N. The latter quantity changes sign at the switching point, W*. 
Therefore, the first term in equation (12) is a weighted measure of the distance 
from the final point, W, to W*. According to the criterion (12), one switches when 
the difference q - Q equals this weighted measure of distance from W*. One 
should expect to observe switching along trajectories finishing either to the right 
or to the left of W* whenever q varies along a trajectory. 

The optimal strategies fall into two major categories, as illustrated in figures 1 
and 2. The distinction between them may be drawn quite generally in terms of the 
behavior of q defined above. The case depicted in figure 1 occurs if q increases as 
the weight w increases, and the case depicted in figure 2 occurs if q decreases as w 
increases. For simplicity, the interpretation of these conditions is given for a 
special case in which the growth rates and predation rates are proportional in the 
two habitats. We assume that 

gi(w) = Xit(w), (14) 

where Xi are nonnegative constants that depend on the habitat, and ((w) expresses 
the common dependence of the growth rates g1 and g2 on the weight w. We 
assume further that the mortality rates are proportional in the two habitats, that 
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FIG. 2.-Optimal strategy and associated trajectories, where the ratio plg is lower in 
habitat 1 (slow growth) than in habitat 2. The final weights of individuals that switch are close 
together. However, the effect of early switching is to increase mortality rates greatly. 
Individuals starting out at small body weights are unlikely to reach the time of reproduction, 
but those that do will have high body weights. 

is, that 

Li(w) = yin(w) 7 (15) 

where yi are nonnegative constants that depend on the habitat, and m(w) ex- 
presses the common dependence of the mortality rates [i and [2 on the weight w. 
In such a case, we have 

2 _ I - 'n(w) (Y2 _YO (16) 
g2 g1 I (() X2 XI! 

Thus, the difference in the ratios of p/g is given by a factor that depends on the 
body weight times a second factor, which expresses the difference between the 
habitats. 

Now we can show that under our assumptions (14) and (15), switching occurs if 
the mortality m(w) actually varies with w, although there is no change in the sign 
of the diLference in [/g. The difference in [/g cannot change sign as w changes 
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(according to our assumptions), since neither ((w) nor m(w) changes sign. How- 
ever, according to equation (12), switching between habitats is determined by 
variation in q(w). Substituting assumptions (14) and (15) into equation (13) yields 

q(w) = m(w) -Y2 YI I (! I 
(17) X 2 M I \x I X 

Both quantities in large parentheses in equation (17) are independent of w. There- 
fore, q varies with w if m(w) varies with w. As we have seen above, such variation 
implies habitat switching. 

For the interpretation of the following two cases of ontogenetic habitat shifts, it 
is helpful to keep in mind that the ratio Rlg is a ratio of a death rate and a growth 
rate. Therefore, this ratio has the interpretation as a rate of death per unit of 
growth. 

Case 1: pllg Lower in Habitat 2 than in Habitat 1 

In this case, habitat 2 offers a higher growth rate than habitat 1, and also a lower 
rate of increase in mortality per unit of weight gained (Rlg), for all body weights 
under consideration. According to a strategy of minimizing [/g, habitat 2 would 
always be preferred. However, we have already seen that at the final time, T, 
there should be a switch of habitats at some weight W*. The resolution of this 
conflict is depicted in figure 1. Most individuals start in habitat 2, except for those 
with exceptionally large body weights. Individuals that reach large body weights 
find it advantageous to switch to habitat 1, according to the same argument given 
above to explain the motivation for switching at W*. It is at first sight surprising 
that the optimal strategy of some heavier individuals calls for overshooting the 
weight W*. But if one recalls that predation risk decreases as weight increases, it 
becomes apparent that "excessive" weight gain may serve as a partial refuge from 
predation. 

Case 2: pIlg Lower in Habitat I than in Habitat 2 
In this case, habitat 2 offers a higher growth rate, but habitat 1 provides a lower 

rate of mortality increase per unit of weight gained. According to a strategy of 
minimizing Rlg, habitat 1 should be preferred. However, such a choice neglects 
the necessity of achieving a suitable weight for reproduction by the final time, T. 
The optimal strategy is depicted in figure 2. According to this strategy, individuals 
with low initial weights begin in habitat 1 and later switch to the riskier high- 
growth habitat. It is clear that a mixture of foraging in habitats 1 and 2 is necessary 
in order to achieve a weight suitable for reproduction, but it is perhaps not clear 
why individuals should start in habitat 1. Habitat 1 is preferred for the purpose of 
gaining weight safely because the ratio Rlg is lower in habitat 1 than in habitat 2. 
The higher weight thus achieved serves as a partial refuge against predation risk: if 
one must face high predation risk, it is better to postpone the time until a larger 
weight has been achieved. 

One additional point requires further clarification. The weight W* is not a 
universal optimal weight at Tin either of the two scenarios described above. W* is 
the origin of the switching curve or the optimal point of switching only when w = 
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W* exactly at t = T. There is in fact a distribution of optimal weights at T that 
reflects the variation among individuals in their weights at times before T (figs. 1, 
2). In our figures, there is a set of possible weights at a given time t, and according 
to the optimal strategy, each one of the corresponding individuals switches at a 
different weight and time, and each therefore reaches the final time at a different 
final weight. The result of switching from habitat 2 to habitat 1 in case 1 is a 
decrease in predation rates, but this also has the effect of lowering the final 
weight, W, for an individual. The reverse happens in case 2, in which the effect of 
switching is to increase both the predation rates and the final weight. 

Although the strategy of minimizing ,u/g differs from the present one, there are 
many similarities. It is apparent from figures 1 and 2 that, initially, individuals do 
best if they follow the rule of minimizing ,u/g. However, at later stages, a switch in 
strategy may be advantageous. When the habitat with a high growth rate is 
initially favored, the switch is caused by diminishing returns from additional 
foraging, compared with increasing fitness losses from predation. When the habi- 
tat with a low growth rate is initially favored, the switch is caused by the neces- 
sity of achieving a body weight adequate for reproduction or metamorphosis by 
time T. 

The rule of minimizing ,u/g may be derived under a different set of conditions. If 
we consider the case of a metamorphosing amphibian and assume that metamor- 
phosis occurs at a fixed weight and that the time required to reach that weight is of 
no consequence, then the optimal strategy is to reach the weight for metamor- 
phosis while experiencing the least risk of predation. The ratio ,u/g is interpreted 
as the rate of predation per unit of weight gain, and therefore, it is optimal to 
minimize ,u/g, as was done by Werner (1986). Such a result is obtained from our 
theory if the condition that f(T, W) = R(W) is omitted, and instead (aflat) (w, t) is 
constrained to vanish. 

Effect of Changes in Parameters on the Optimal Strategy 

The optimal strategy as specified by the switching curve (eqs. 12, 13) alters if 
various parameters change. This feature allows the model to be tested experimen- 
tally. For example, if T or the perception of time remaining until reproduction is 
decreased experimentally, W* is not altered, but the current position of an 
individual is moved forward in time. This is illustrated in figure 3, where ,u/g is 
lower in habitat 1, but growth and predation rates are higher in habitat 2 (corre- 
sponding to case 2). By decreasing T - t, it can be seen that individuals that start 
out below the switching curve switch habitats at smaller sizes than they otherwise 
would. The smaller individual in figure 3 crosses the switching curve if the time 
remaining is shortened and hence should switch habitats according to the theory. 
The result for each of these organisms is a greater probability of predation and a 
smaller size by time T. Therefore, at the population level, we expect to see a 
greater fraction of individuals switching at an earlier age, with concomitant 
greater predation rates and smaller sizes at the final time. Alternatively, if T is 
increased, there is a point at which no members of the population switch, simply 
because time is no longer a constraint. 

If predation risk or the perception of risk is increased in habitat 2, the position 
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FIG. 3. -The effect on the optimal strategy of a shift in remaining time. Solid curve, The 
optimal switching curve. Dashed line and the associated dotted lines illustrate the effect of a 
change in the perceived time remaining until reproduction. If the corresponding dotted line 
crosses the optimal switching curve, there is a habitat shift, according to the optimal strategy. 
Individual 1 starts at a large weight and does not shift habitats, even under the time shift. 
Individual 2 starts at a lower weight and makes a shift. 

of W* and the switching curve changes. The overall effect of an increase in 
predation risk in habitat 2 is to delay the transition to that habitat for some 
individuals and to prevent it entirely in others. This is illustrated in figure 4, where 
the switching curve corresponding to figure 2 is shown as a dashed line, and the 
new switching curve has a square plotted on it. Individuals marked 1 and 2 in 
figure 4 would have switched at the points marked S1 and S2 on the dashed curve. 
After the change in predation risk, individual 1 does not switch from habitat 1 and 
consequently achieves a lower final body size than if switching had occurred. 
Individual 2 switches, but at a later time than formerly; hence, individual 2 also 
achieves a lower body size. Thus, one effect of an increased predation rate in the 
second habitat is a lower mean body size in the population. The individuals that 
switch experience higher predation rates. However, since fewer individuals 
switch, overall predation rates in the population may increase or decrease depend- 
ing on the starting sizes of individuals. The opposite effects may be expected if 
predation were decreased in habitat 2. 

Finally, if the growth rate is increased in habitat 1, then the position of the 
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FIG. 4.-The effects on the optimal strategy of a change in mortality rate. Dashed curve, 
The old optimal switching curve, as in figure 2. Dotted curve, The new optimal switching 
curve if the mortality rate P,2 iS increased. The effect is to lower the weight intercept W* on 
the line where t = T and to shift the switching curve to the left. This corresponds to a switch 
to habitat 2 at a later time than in figure 2. The consequence of such a shift is a reduction in 
final body sizes. The trajectories for two individuals are shown. The points at which they 
would have switched habitats under the old conditions are denoted by SI and S2, respectively. 
Individual I begins at a large weight and does not switch habitats after the increase in [L2. 
Individual 2 begins at a smaller weight and switches later than if [L2 were unchanged. 

switching curve is changed as in figure 5. This results in a shifting of W* and the 
switching curve to the left, since the value of remaining in habitat I has increased. 
Again, the result is to delay the time of switching for some individuals and to 
prevent it entirely for others. An individual starting with a high body weight (Ind. 
I in fig. 5) does not switch habitats in either case. Because the growth rate in 
habitat I is higher, that individual achieves a larger body size. An individual 
starting at a small size (Ind. 2) finishes near the new value of W* if g, is increased. 
This results in a smaller body size than if switching had occurred earlier. Thus, the 
result of an increase in growth rate in the slow-growth habitat is not necessarily an 
increase in body weight, since the overall benefits of remaining in the slower but 
safer habitat are increased. Predation rates for the population as a whole decrease, 
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old switching curve, as in figure 2. Dotted curve, The new switching curve, after g, has been 
increased. The new switching curve is shifted to the left, as in figure 4. Individual I begins at a 
large weight and consequently does not shift habitats if g, is increased. Under the old set of 
conditions, this individual would have shifted habitats at point SI but would have reached a 
smaller body size than under the new regime. Individual 2 starts at a lower weight and 
switches habitats under both sets of conditions. However, the final weight for individual 2 is 
lower under the new set of circumstances. 

and thus the overall fitness of the population increases, despite an overall de- 
crease in body sizes at the time of reproduction. 

DISCUSSION 

The present work derives a number of important results concerning foraging 
and predator avoidance from a single set of assumptions. Some of these results 
were previously derived from a variety of differing assumptions by Gilliam (1982), 
Werner and Gilliam (1984), Mangel and Clark (1986), and McNamara and Houston 
(1986, 1987). The context of life-history strategies was emphasized by Gilliam and 
by Werner and Gilliam. The general dynamic programming approach with time 
constraints was advocated by Mangel and Clark and by McNamara and Houston. 



TIME CONSTRAINTS ON ONTOGENETIC NICHE SHIFTS 699 

It should be noted that none of these theories (including our own) allow for 
frequency-dependent decision making. In such a case, the problem would become 
a many-player game. The theory of such games is quite difficult, and it is beyond 
the scope of this work. One might attempt to approximate such results by consid- 
ering decision making by a single individual that is part of a large group. Collective 
effects would be reflected in variations in foraging success and predation rates. 
The present formulation might suffice if individuals do not attempt to anticipate 
such collective effects. 

Predictions 
The feature that distinguishes our theory from previous theories of growth and 

predation-dependent ontogenetic niche shifts (Gilliam 1982; Werner and Gilliam 
1984; Werner 1986) is our consideration of time constraints. We have introduced a 
time constraint by assuming that reproduction, or some other major event related 
to fitness, occurs at the end of a fixed time, T. We demonstrated that in a two- 
habitat model, with the objective of maximizing reproductive output (weight) at T, 
optimal strategies may involve habitat shifts along a curve in a weight-time plane. 
The position of the curve depends on weight and habitat-dependent growth and 
mortality rates as well as the relationship between final weight and reproductive 
output. 

In their consideration of ontogenetic niche shift, Gilliam (1982) and Werner and 
Gilliam (1984) employed a rule that optimal strategies should minimize the ratio of 
pu (mortality) to g (growth) when choosing habitats. It is understood in their 
derivation that the strategies must depend not on time but only on the weight of an 
individual. Such an assumption is incompatible with our assumption of reproduc- 
tion at a fixed time. We have shown that habitat shifts may emerge despite equal 
ratios of pu/g in the two potential habitats. This result agrees with intuition. 
Consider an organism with low growth rate near the time of reproduction occupy- 
ing a habitat of low predation risk. If the organism is currently large enough to 
have a high reproductive value at the final time, T, then it should stay in the 
habitat. If it is small with a reproductive value near or at zero, then it should 
switch to a habitat of high growth despite higher predation rates. 

A second major point of diversion between our theory and the jL/g model is our 
prediction that, within a single population, optimal weight and timing of habitat 
shifts may vary among individuals. This results from including a time constraint 
and allowing for some variation among weights of individuals at any given time. 
The p/g theory predicts a single optimal weight for habitat shifts and makes no 
predictions about the timing of shifts. Our prediction is more closely aligned with 
empirical data concerning ontogenetic habitat shifts. For example, within amphib- 
ian populations, both the size and the timing of metamorphosis are variable. We 
expect systems without time constraints to experience variation in the timing 
of shifts but not variation in the weight at shifts. However, systems with time 
constraints are expected to experience variation in both. 

Our approach and conclusions are similar to those of McNamara and Houston 
(1986) and Mangel and Clark (1986). These authors have used dynamic program- 
ming techniques to express behavioral decisions in some common currency of 
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fitness. This device makes it possible to relate the study of short-term behavior to 
long-term fitness. In both these works, foraging decisions are shown to depend on 
an individual's state and the time remaining in a period T. Our theory takes a more 
long-term dynamic view of this dynamic problem. We use a time period that 
incorporates ontogenetic change in body weight, and we allow growth and preda- 
tion rates to depend on weight. We have chosen a deterministic formulation, in 
contrast to McNamara and Houston and to Mangel and Clark. The implications of 
this difference are explored in Appendix B. 

The results corresponding to figures 4 and 5 illustrate an important point, which 
was derived under different assumptions by McNamara and Houston (1987). The 
effect of an increase in predation risk in one habitat is to decrease body sizes 
throughout the population but not necessarily to increase deaths from predation. 
The effect of an increase in growth rate in one habitat is to decrease predation 
mortality throughout the population but not necessarily to increase final body 
weights. Therefore, one must be exceedingly careful in assigning causes of mortal- 
ity or changes in the condition of individuals in a population. One should be even 
more circumspect when attempting to ascribe population regulation to a single 
factor or to a restricted set of factors acting in isolation. 

Testing the Theory 
The major novel feature of our theory is the identification of time constraints as 

determinants of optimal timing and weights of ontogenetic niche shifts. Therefore, 
we concentrate on predictions concerning variation in the final time, T. Quantita- 
tive tests of the theory are limited by the extreme difficulty of quantifying parame- 
ters such as predation risk. However, the qualitative predictions of our theory are 
testable by both comparative and experimental methods, since the relationship 
between the state of an organism w and the time remaining in some period (T - t) 
varies in nature and may be manipulated experimentally. In the following discus- 
sion, we consider two interesting life-history phenomena that may provide fruitful 
systems for application of this theory. 

Diapause is a common feature in insect life histories; it appears to be an 
adaptation to permit survival under adverse environmental conditions such as 
extreme cold or drying. Individuals that do not enter diapause often die, and 
survival during and after diapause may depend on the condition of the individual 
at the onset (Tauber et al. 1986). Typically, diapause is induced by an environmen- 
tal cue (such as the photoperiod), which is received long before the upcoming 
adverse environment. We may expect variation from year to year or from region 
to region in the relationship between physiological condition (e.g., weight) and the 
time remaining until the environment deteriorates. Our theory predicts that indi- 
viduals in poor condition near the critical time will undertake more risky foraging 
than those in better condition. Therefore, in a comparison of two populations that 
differ in the time to the onset of adversity, we expect to see higher growth and 
mortality rates in the population experiencing the earlier onset. Within popula- 
tions, individuals in poor condition late in the season are expected to take more 
risks than individuals in the same condition earlier in the season. A direct experi- 
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mental test could include manipulation of cues, such as photoperiod, that induce 
diapause. 

Werner (1986) viewed size at metamorphosis in amphibians as a trade-off 
between growth and predation risk, where habitat 1 is an aquatic environment 
(larval stage) and habitat 2 is a terrestrial environment (adult stage). In these 
circumstances, our theory may be more suitably applied than a simple minimiza- 
tion of p/g. The life histories of these amphibians are characterized by temporally 
discrete and often explosive breeding periods, with reproductive success a func- 
tion of size at reproduction. Furthermore, the present theory makes predictions 
about both timing and size at metamorphosis, which typically vary within and 
between amphibian populations, as stated previously. 

Our theory also applies when only the larval period is considered. Temporary- 
pond communities provide an excellent example of time constraints on foraging 
decisions. Ponds are subject to various drying regimes, larvae must metamor- 
phose before drying or risk desiccation, and future reproductive success is an 
increasing function of size at metamorphosis (Smith 1987; Semlitsch et al. 1988). 
Therefore, larval stages of amphibians in temporary ponds provide a system in 
which discrete and variable time periods occur, and the payoff at the time of 
metamorphosis increases with body weight. Wilbur (1987) has manipulated drying 
regimes in experimental pond communities and demonstrated increased growth 
rate (and developmental rate) under rapid drying of at least one species, as our 
theory would predict. Under increased drying, Bufo americanus tadpoles meta- 
morphosed earlier than, but at the same size as, those in ponds with stable water 
levels. This is not a direct test of our theory since uncontrolled factors associated 
with accelerated drying (such as increased temperature and food density) may 
account for the increased growth rate, rather than a switch to risky and more- 
rewarding foraging behavior. Nevertheless, this system appears to be suitable for 
the study of time constraints on foraging decisions. 

SUMMARY 

Short-term foraging behavior is typically influenced by the needs to obtain food 
at a high rate and to avoid predation. There is increasing evidence that the need 
to balance these conflicting demands plays a role in ontogenetic habitat shifts, 
including the spectacular shifts characteristic of complex life cycles. Previous 
theory has led to rules that are independent of time to predict the size at which 
habitat shifts take place. We develop a model that incorporates time constraints, 
by assuming that reproduction or some other major event, such as diapause or 
metamorphosis, must occur by a specified time or date. We incorporate recent 
formulations of dynamic programming that allow strategies to balance conflicting 
behaviors by expressing them in the common currency of future reproductive 
output. The resulting theory predicts optimal strategies for pre-reproductive habi- 
tat shifts that depend on both time and body weight. Our theory, although derived 
from a single set of assumptions, leads to a synthesis of insights gained from a 
diversitv of nrevious dynamic oDtimization Droblems. 
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APPENDIX A 

SOLUTION OF THE DYNAMIC PROGRAMMING EQUATION 

This appendix contains a general formulation of the problem and its solution. We derive 
the dynamic programming equation for the case in which the forager is free to choose an 
arbitrary division of foraging time between two habitats. The result under this more general 
assumption is no different than if the forager were constrained to forage in only one habitat, 
except for a few switches. The main result of this appendix is an expression for the 
switching function along a trajectory. This is obtained by first calculating the time deriva- 
tive of fitness along a trajectory. This result enables us to calculate the marginal value of 
weight gain, which in turn leads to an expression for the switching function. 

The Dynamic Programming Equation 
We change notation slightly from that of the text ("Assumptions and Problem Formula- 

tion") by defining 

g(w, p) = gI(w) + pLIg2(W) - gI(w)] (Al) 

and 

pL(w, p) = L1I(w) + p[>L2(w) - L1 (w)]. (A2) 
Here, the variable p denotes the proportion of time spent in habitat 2. The dynamic 
programming equation can be derived as before by computing the expected fitness at 
weight w at time t in terms of the expected conditions at time t + dt. In the interval (t, t + 
dt), the individual may be captured by a predator, with probability pL(w, p)dt, or may 
escape predation, with probability 1 - [x(w, p) dt. In the latter case, weight gain occurs at 
the rate g(w, p). Thus, 

f(w, t) = [1 - ,L(w, p)dt] f(w + g(w, p)dt, t + dt). (A3) 

The expression on the right-hand side may be expanded to yield 

f(w, t) = f(w, t) + f dt + f g(w, p)dt - ,L(w, p)f(w, t)dt. (A4) 
at aw 

After canceling f(w, t) from each side and dividing by dt, the result is 

aflat + g(w, p) aflaw - ,u(w, p) f(w, t) = 0. (A5) 
This equation describes the expected change in fitness, for any predetermined choice of p 
as a function of w and t. In order to maximize the left-hand side of equation (A5), p should 
be chosen to maximize the right-hand side of equation (A4). The optimal p* maximizes 

n(t, w, p) = g(w, p) aflaw - ,L(w, p) f(w, t). (A6) 

This condition, together with equation (A5), constitutes the dynamic programming equa- 
tion. 



TIME CONSTRAINTS ON ONTOGENETIC NICHE SHIFTS 703 

In our particular case, condition (A6) can be simplified. We write 

n(t, w, p) = n(w, t, 0) + pAn(w, t), (A7) 
where 

An(w, t) = [g2(w) - g1(w)] fflaW - [iA2(w) - [I(w)] f(w, t). (A8) 
The optimal strategy must have p* = 1 if An(w, t) > 0, and p* = 0 if An(w, t) < 0. When 
An (w, t) = 0, we cannot determine p from this condition. The optimal strategy is exactly as 
determined in the text ("Assumptions and Problem Formulation"), although we started 
with a more general formulation. 

A difficulty in solving equations (A5) and (A6) is that the control variable p must be 
determined along with the rest of the solution. This difficulty disappears if we know 
beforehand that p is constant. We have just shown that p* is constant except when An 
changes sign. The following calculation is valid in a region where An does not change sign. 

An Integral of the Dynamic Programming Equation 
Equations (A5) and (A6) (or eqs. 6, 7) must be solved together. In order to compute p 

from equation (A6), f and aflaw must be known. We require an equation analogous to 
equation (A5) for aflaw (the marginal value of increased weight) in order to obtain p from 
equation (A6). The following method yields the required information about derivatives off 
in the important case (assumed here) -in which neither the growth rate nor the predation rate 
depends explicitly on the time. 

The first step is to differentiate equation (A5) with respect to t to yield 

a2flat2 + g(w, p) &2flataw - [Lw, p) aflat = 0. (A9) 
The chain rule for a function of two variables implies that the total derivative along a 
trajectory is given by 

d af at a + g(w, p) a a. (AlO) dt at at at aw at 
Thus, equation (A9) may be rewritten as 

d af af d L dt = (w, P) at ' (All) 

which is the required analogue of equation (A5). It now follows that 

d (1 At)= 0 (A12) 

The proof consists in differentiating the quotient in equation (A12) and substituting equa- 
tions (A5) and (Al1). Therefore, the quotient in equation (A12) is constant along trajec- 
tories. Equation (A12) leads to the crucial information about aflaw. If equation (A5) is 
substituted into equation (A12), the result is that 

[g(w, p) aflaw - [x(w, p)f]/f(w, t) is constant along trajectories. (A13) 

The relation (A13) constitutes a second integral of the dynamic programming equation. 

Variation in the Switching Function along a Trajectory 
The switching function is obtained from equation (A13) as follows. Equation (A8) may be 

solved for aflaw to yield 

af An + [[2(W) - KI(w)]f (A14) 
aw g2(w) - gI (W) 
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When this result is substituted into equation (A13), the result is that 

g(w, p) - 
An - + q(w, t) is constant along trajectories, (A15) 

g2(w) - g1(w) f(w, t) 

where 

q(w, p) - g(w, p)Lp2(w) - -I (W) _ (W, p) (A16) 
g2(U') - gi1(w) 

Moreover, it follows from some manipulations that, in fact, q is independent of p: 

q (w) =- LW [L [ Iw (A 17) 
9g2(w gi(w) g(w) g2(W)J ( 

Another way of expressing condition (A15) is 

g(W, p) An G AN 
+ q(w) + Q. (A18) 

92(w - g I(W) f(w, t) AG F 
The capitalized quantities in equation (A18) denote the values at the final point on the 
trajectory, where t = T and w = W. Switching occurs if An = 0, that is, if 

G AN G R\ = q - Q (A19) 

Equation (A19) determines the position of the switching point (if any) along a trajectory. 

APPENDIX B 

METHODS: DETERMINISTIC VERSUS STOCHASTIC THEORIES 

Our approach is derived from the calculus of variations. According to these ideas, one 
seeks to cover the state space with a family of (deterministic) optimal trajectories, analo- 
gous to filling a portion of space with light rays. These ideas carry over to control theory, 
and they are at the heart of the dynamic programming approach. 

A deterministic approach might be interpreted as one in which an individual's behavior is 
determined quite early (perhaps at birth) and does not respond to changing conditions, 
since they are completely predictable if the world is truly deterministic. Although we 
consider a deterministic model, the strategy obtained can be applied in a stochastic setting. 
The optimal strategy obtained above expresses the optimal habitat choice in terms of an 
individual's weight and perception of the time remaining until reproduction, as well as 
growth and predation rates, each of which can vary in response to random influences. 

The deterministic dynamic programming approach apparently has not been exploited as 
thoroughly as the stochastic theory in behavioral ecology. A notable exception is the work 
of Kozlowski and Wiegert (1986); a similar approach to life-history theory was taken by 
Schaffer (1983). They were concerned with the problem of the optimal allocation of energy 
to growth and reproduction. The situations that they considered are simpler than ours, 
since they assumed that the mortality rate is independent of body weight and time and that 
there is no growth after the switch to reproduction. Consequently, the theory required to 
construct their switching curves is simpler than ours. Their use of a deterministic model, 
and the conception of the optimal strategy as one that depends on the state of an individual 
and on the time remaining, is in complete agreement with our approach. 

Recent work of McNamara and Houston (1986, 1987) and of Mangel and Clark (1986) has 
employed a dynamic programming approach, as in our work, but it has included random 
foraging success. Their work allows for the possibility of starvation, in contrast to the 
present work. The probability of starvation may be quite substantial in the case of small 
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birds in winter, as pointed out by McNamara and Houston. Random effects may also be 
important for amphibians that must metamorphose before a temporary pond dries up. We 
cannot give a complete theory for these cases here, but we attempt to indicate when 
stochastic effects may be neglected in the formulation of a strategy, with only slight con- 
sequences for the final payoff. 

We first consider a stochastic strategy Ss, which is presumed to be optimal. A function 
that is maximized behaves like a quadratic near the maximizing argument. Thus, optimality 
of Ss implies that deviations of an alternative strategy S from Ss have an effect on the final 
payoff that is proportional to the square of the deviation of S from Ss. Therefore, a 
deterministic strategy must deviate substantially from Ss before the effect on the payoff is 
noticeable. 

We now examine the circumstances under which a deterministic "optimal" strategy 
differs substantially from a stochastic one. In the simplest circumstances, a deterministic 
strategy corresponding to a stochastic one is obtained by averaging the dynamic equations 
over whatever random variables are present. For example, when one neglects variations in 
foraging success (as we have done), one replaces the probability distribution of a single 
foraging bout by its mean. In the case of birds foraging in winter, such a procedure is 
probably satisfactory if a large number of foraging bouts (at least 5 to 10) occur within a 
time scale when starvation might be a threat. Thus, we do not expect to find substantial 
differences between deterministic and stochastic optimal strategies unless there are few 
foraging opportunities before possible starvation. As we indicated above, such differences 
must be substantial if the final payoff is to be affected very much. 

A similar discussion may be given for foraging strategies in anticipation of metamor- 
phosis, when the cutoff time (when the pond dries up) is random. A deterministic strat- 
egy could be obtained by averaging the time to drying up in computing the time remaining 
(T - t in our analysis). Such an approximation may fail if the time to drying up has a widely 
dispersed distribution and if catastrophic early drying cannot be detected early enough to 
alter the foraging strategy and complete metamorphosis. Otherwise, a deterministic strat- 
egy may be quite satisfactory. 

Such informal analyses may be supplemented by analogies with theories that have been 
completely worked out. One such analogy is with the theory of optimal harvesting (devel- 
oped in Ludwig 1979; Ludwig and Varah 1979). For problems of fisheries management, 
stochastic effects were found generally to have only a slight effect on the optimal strategy, 
except near certain threshold population sizes. A second comparison is between classical 
geometrical optics (deterministic) and diffraction theory (stochastic). The geometrical 
theory is perfectly adequate for many purposes, and the diffraction results may often be 
interpreted as corrections to underlying geometrical models. On the basis of these analo- 
gies, one would expect the main qualitative features of the strategies and payoffs to be 
provided by a deterministic theory, but such results may require modification in situations 
in which such risks as starvation or unforeseen drying up are substantial. 

If a stochastic formulation is adopted, explicit analytical solutions such as that given in 
Appendix A are difficult to obtain. Moreover, one cannot aid intuition by drawing optimal 
trajectories. A more natural setting is then a discrete-time approach, combined with a 
numerical solution of the dynamic programming equation, as advocated by Mangel and 
Clark (1986) and McNamara and Houston (1986, 1987). The analytical approach adopted 
here generally provides superior insight into the dependence of the qualitative features on 
the assumptions made. However, such theory may become excessively complicated as 
model assumptions are elaborated. 

The numerical approach complements the analytical one. Numerical methods are often 
easier to apply to complicated situations, but such results should always be compared with 
simpler analytical solutions and with intuition in order to ensure that unexpected results are 
not artifacts of the method or approximation employed. Experience in fields such as 
continuum mechanics has shown that problem solving often requires both analytical and 
numerical methods. 
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