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Abstract. Complex life cycles are characterized by niche shifts at the time of meta-
morphosis. Current models predict optimal sizes for metamorphosis based on maximizing
growth, minimizing mortality, or some balance of these goals. These models predict optimal
sizes that are independent of the time of metamorphosis. Reproduction and other major
events in the life history of organisms are often constrained to seasons, and the state (e.g.,
mass) of the organism at that time is related to fitness. Therefore, an organism’s state as
well as the time that that state is achieved are central variables in these time-constrained
life histories.

We extend earlier theory to include explicit time constraints in three, hypothetical,
complex life cycles. Dynamic optimization models are constructed to determine optimal
time and mass trajectories for niche shifts. First, we consider the habitat shift at emergence
in mayflies, where reproduction terminates a growth period in the first habitat and is
constrained to a season. Second, we consider the habitat shift at metamorphosis in am-
phibians, where reproduction terminates a growth phase in the second habitat and repro-
duction is constrained to a single point in time. Third, we combine the first two effects to
allow an extended period of reproduction in amphibians. Here optimal time and mass
trajectories are determined for two niche shifts—the shift from aquatic to terrestrial habitat
and the shift from a growth phase to a reproductive phase. We present analytical theory
that allows both quantitative and qualitative predictions. Problem constructions and so-
lutions are presented graphically to aid intuition in interpreting our results and extending
the framework to other parameter values and other life-history examples.

The general conclusion is that time constraints on complex life histories lead to optimal
sizes for niche shifts that vary with time. In time-constrained life histories, any variation
in the state of individuals at some time prior to reproduction will be preserved to some
degree at reproduction. Therefore, in time-constrained life histories, we expect optimal
switches in habitat use or life history stage to depend not only on state but also on the

time that state is achieved.
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INTRODUCTION

Complex life cycles, where individuals undergo
abrupt ontogenetic transformation (metamorphosis),
are ubiquitous in nature (Wilbur 1980, Werner and
Gilliam 1984, Werner 1988). A discrete shift in habitat
use often coincides with the transformation occurring
at metamorphosis. Perhaps eighty percent of all animal
species have life histories that include metamorphosis,
and many of the remaining species undergo ontogenetic
niche shifts without metamorphosis (Werner 1988).
Despite the prevalence of ontogenetic niche shifts, their
evolution and ecological implications have received
relatively little theoretical attention (Istock 1967, Wil-
bur and Collins 1973, Lubchenco and Curbit 1980,
Wilbur 1980, Caswell 1982, Werner and Gilliam 1984,
Werner 1986, 1988, Ludwig and Rowe 1990).

! Manuscript received 7 November 1989; revised 13 June
1990; accepted 6 July 1990.
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Werner (1986) argues that the ecologically salient
feature of metamorphosis is the associated shift in hab-
itat use. Therefore, the evolution of such life cycles
must be related to the ecological causes and conse-
quences of ontogenetic niche shifts (Werner and Gil-
liam 1984, Werner 1986, 1988). Given that growth
and mortality rates as well as fecundity vary with size,
recent theory views ontogenetic niche shifts as strate-
gies for achieving an optimal balance between growth
benefits and mortality risks during ontogeny. When
habitats vary in size-specific growth and mortality rates,
optimal strategies often necessitate habitat shifts (Gil-
liam 1982, Werner and Gilliam 1984, Werner 1986,
1988). Gilliam (1982) concluded that fitness is maxi-
mized if individuals choose habitats where the ratio of
mortality rate (u) to growth rate (g) is minimized. Such
a policy maximizes survival to each size in a time-
invariant environment, since the individual accumu-
lates each bit of mass at the lowest mortality cost. A
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similar model has been used successfully to predict
habitat shifts in pre-reproductive fish (Gilliam and Fra-
ser 1987, Turner and Mittelbach 1990). Werner (1986)
has suggested the use of Gilliam’s model for predicting
size at metamorphosis in amphibians.

The derivation of the “minimize u/g” rule assumes
that reproduction is continuous and extends over an
infinite time horizon (Gilliam 1982). The correspond-
ing switching rule predicts that all individuals will shift
habitats at the same size. However, reproductive pe-
riods (the payoff) that are restricted to specific and short
time periods are common: a case not considered by
Gilliam. We refer to these as life histories with time
constraints. Furthermore, temporal variation of switch
sizes within populations is common to organisms with
complex life cycles (e.g., Vannote and Sweeney 1980,
Wilbur 1980, Ydenberg 1989), a feature that is not
accommodated in the theory of Werner and Gilliam
(1984), or of Werner (1986). For example, the size of
emergent mayflies typically declines as the reproduc-
tive season progresses (e.g., Ide 1940, Sweeney and
Vannote 1978, Vannote and Sweeney 1980).

Dynamic optimization models are well suited for
this type of problem (Mangel and Clark 1986, 1988,
McNamara and Houston 1986, Houston et al. 1988).
These models assume that behavioral decisions depend
on the state (e.g., mass) of the decision-maker; they
predict time courses of behavior and allow the costs
and benefits of short-term behaviors to be expressed
in some common currency (e.g., fecundity at the payoff
time). Incorporation of time constraints into theory for
ontogenetic niche shifts demonstrates that costs and
benefits of habitat shifts will vary with both an indi-
vidual’s state and the time remaining until the payoff
(Ludwig and Rowe 1990). Under such conditions op-
timal sizes for habitat shifts vary with the time re-
maining to the payoff. Time constraints may then ac-
count in part for the observed temporal variability in
size at some ontogenetic niche shifts.

The goal of the theory presented here is to explore
the role of certain time constraints on optimal mass
and time trajectories for habitat shifts in organisms
with complex life cycles. We have considered three
distinct examples of time effects: (1) A constrained
period when habitat shifts are possible and the habitat
shift occurs at reproduction. In this case growth is con-
fined to the first habitat, as in mayflies. (2) A con-
strained period of reproduction that terminates a growth
phase in the second habitat, as in amphibian meta-
morphosis. (3) A combination of the previous two ef-
fects to allow a variable time of reproduction. The life
history then involves two decisions. The first decision
concerns the time of metamorphosis or habitat shift,
and the second decision concerns the timing of repro-
duction. The theory for the third case combines the
theory of Ludwig and Rowe (1990) with the theory for
the first case. It is noteworthy that our theory is ana-
lytical, and our constructions are graphical. The theory
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thus allows qualitative and quantitative predictions
under a wide variety of assumptions.

MAYFLY EMERGENCE: AN EXAMPLE OF GROWTH IN
A SINGLE HABITAT

Insects, like amphibians, have complex life cycles,
where some transformation in both morphology and
niche use occurs during ontogeny. Size attained during
the larval growth period is directly related to adult
reproductive success in most insects. Large females
generally produce more or larger eggs, and large males
often gain access to more females (Hinton 1981,
Thornhill and Alcock 1983). While variation in size at
metamorphosis occurs both within and between pop-
ulations, most previous work concerned the latter (e.g.,
Roff 1981, 1983). Seasonal variation is pronounced in
many groups (Vannote and Sweeney 1980, Forrest
1987). Proposed proximate causes for within-popula-
tion variation include temperature (Sweeney and Van-
note 1978, Vannote and Sweeney 1980), diet (Palmer
1984), and population density (Peters and Barbosa
1977).

Insects differ from amphibians since growth of so-
matic tissue is largely restricted to the larval or nymph-
al stage. While teneral mass gain may occur in some
groups (e.g., Odonata, Hemiptera), others, such as
Ephemeroptera and Megaloptera, and some Plecop-
tera, Trichoptera, Lepidoptera, and Diptera, have lost
or reduced adult feeding structures (Borror et al. 1981).
Werner and Gilliam (1984) suggested an extension of
their model to insect size at metamorphosis. However,
in those cases where no growth occurs in one of the
habitats, a “minimize u/g model” is clearly not appli-
cable. Forrest (1987) provided a verbal explanation of
within-season variance in size at metamorphosis in the
mole cricket using a similar cost-benefit approach. For-
rest recognized that the costs and benefits associated
with size at metamorphosis varied within the repro-
ductive season. Here we will present an explicit model,
using an approach similar to both Werner and Gilliam
and to Forrest, to explore some possible roles of time
constraints on temporal size at emergence in insects.

For this exercise we will consider mayfly size at
metamorphosis, as a simple example for the illustra-
tion of some central points. A general life history of
mayflies is: eggs deposited in water hatch, grow, and
develop as larvae; undergo partial metamorphosis and
emerge to aerial subimagoes, then rapidly molt to adults
(imagoes); mate, oviposit, and die (Brittain 1982).
Adults lack feeding apparatus, so this stage is restricted
to reproduction and in some cases to dispersal. In tem-
perate regions, univoltine life cycles are common, with
growth and mortality occurring throughout the year
and emergence restricted to the warmer months (e.g.,
April through August). The total aerial reproductive
phase of individuals may last only a few days, while
the larval growth phase may last over a year. Size at
metamorphosis is directly related to fecundity in fe-
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males. Within mayfly populations, a great deal of vari-
ance in size at emergence occurs (e.g., Ide 1940, Swee-
ney and Vannote 1978, Vannote and Sweeney 1980).
Early emergers are typically larger than later emergers.

There are costs and benefits in the decision to emerge.
Delaying emergence carries with it the benefit of in-
creasing size (fecundity), but also the cost of delaying
reproduction. The former will generally encourage in-
dividuals to remain in the water and grow, while the
latter will encourage emergence for early egg deposi-
tion. Some possible costs of delayed reproduction in-
clude priority effects, where early offspring have a com-
petitive advantage due to low density or due to gaining
a size advantage. We will represent this conflict as one
between high fecundity associated with large size and
high offspring quality associated with early eggs. Other
benefits of large size and early emergence are possible;
for example, in other insects large adults may have
higher mating success, but early adults may gain access
to higher quality mating territory.

At the beginning of an emergence season we assume
some individual variation in body size, but allow all
individuals to follow the same growth trajectory. Body
size variation may occur due to variation in hatch date,
due to variation in parental date of reproduction the
previous season, or due to some stochastic variation
in growth rates of larvae. We allow individuals to fol-
low identical growth trajectories during the emergence
season so that we may focus on the conflict between
large size at emergence and early emergence, and to
simplify the analysis.

Our objective is to formulate a model that offers one
explanation for the observed seasonal decrease in size
at emergence that is common to populations of may-
flies and several other insect groups. The model in-
corporates two related themes that will be elaborated
below and in further sections of this manuscript: (1)
the benefits of incremental increases in some state vari-
ables (e.g., mass) vary with current state; and (2) the
amount of time remaining affects the reproductive val-
ue of individuals. More specifically:

1) Incremental increases in mass have benefits from
increased numbers of eggs and costs from increased
time until emergence. However, relative increases in
an individual’s fitness with an increment of gain in
mass vary with body size; one extra egg makes a greater
percentage increase in fitness of individuals that could
currently produce few eggs than of individuals that
could currently produce many eggs. Such relative in-
creases in fitness are the appropriate currency for com-
paring strategies when the effects of size and time are
multiplicative, as we assume below. Therefore, selec-
tion on individuals to emerge early and forgo further
growth will be stronger on larger individuals.

2) Smaller individuals late in the reproductive season
have more to lose by remaining in the water to increase
size at emergence than the same-size individuals have
early in the season. Early in the season when the fitness
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of eggs produced is relatively high, the relative cost of
delaying oviposition of a fixed number of eggs is low.
Later in the season when these eggs have little re-
maining fitness, the relative cost of a similar delay in
oviposition is high.

Formulation of the model

We assume that net expected reproductive output
depends upon both mass at emergence (W) and time
of emergence (7). The effects of mass and time are
assumed to act independently, so that the fitness F is
aproduct of contributions from W and T. For example,
the total number of eggs laid over a lifetime will depend
upon mass at emergence. We assume that

Total eggs = E(W)

_Jaw - wy itw>w,
0 otherwise,

ey

where W, is a critical lower mass for egg production,
B is a parameter that determines the shape of the re-
lationship, and a is a scale factor that adjusts for units
of measurement. The expected contribution of each
egg will depend upon time of emergence. We assume
that

Contribution = C(T)

— (TC_ T)“ 1fT< TC’
0 otherwise,

2

where T, is a critical upper limit for time of reproduc-
tion and « is a parameter that controls the shape of
this dependence.
Growth. —We must also make an assumption about
the rate of growth in mass, for example
aw

n =gw) = rw(1 — w/k). 3)

Here the growth rate g(w) has been assigned a logistic
form, with growth proportional to both a rate constant
r and mass w at small body sizes, and a maximum
mass k. This equation may be integrated starting at an
initial mass w, to obtain w as a function of ¢. The
specific forms for E(W), C(T) and g(w) given in Egs.
1, 2, and 3 are for illustrative purposes only. The qual-
itative form of our conclusions holds quite generally.

Mortality. — We assume that prior to emergence, the
mortality rate of an individual is u(w). This imposes a
cost to the delay of reproduction, in addition to the
contribution effect C(7).

We shall assume that the expected fitness of an in-
dividual that attains mass w at time ¢ is given by

Fw, t, T) = E[W(DIC(D)Sw, ¢, T), C))

where W(T) is the mass achieved at time of reproduc-
tion 7" and S(¢, 7) is the probability of survival from
time ¢ to time 7. According to our definition of mor-
tality,
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Sw, t, T) = exp{—f u[w(t’)]dt’}. )

In our example below, we choose u(w) to be a constant
independent of w.

Optimal time for emergence

We obtain the optimal emergence time by maxi-
mizing F(w, t, T) as a function of 7~

a ac
9 _9C piwirison, 1 1)

oT dT
dE[(W(D)]

+ CO)Sw, t, T) T

— WW(DIEW(DIC(D)S(w, ¢, T)

=0. 6)

This equation determines the optimal relationship be-
tween mass and time of emergence. After rearrange-
ment, Eq. 6 becomes

-1 dC 1 dE[W(T)]

)

Each side of Eq. 7 can be interpreted separately.

The left-hand side of Eq. 7 will be denoted by L. It
represents the relative loss in quality or value of eggs
as a function of time at emergence (=time of ovipo-
sition). Since C(7) eventually vanishes at high 7, L
increases sharply near a cutoff such as 7.. Under the
assumption in Eq. 2

o«
T.—- T

®)

The right-hand side of Eq. 7 will be denoted by R.
It represents the relative gain in egg production per
unit of time, minus mortality losses. According to the
chain rule of calculus,

dE dE dw dE
ar _awa  aw*" ©)
Therefore
gw) dE
=="— — . 1
R EGW) dW ww) (10)
Under the assumption in Eq. 1
1 dE _|pw—wy) ifw>w, an
EW) dw 0 ifw< w,.
Thus we have
RzWﬁ_giﬂWc_”(W) ifw> w,. (12)

Note that R is infinite at W = W_: R decreases sharply
as W increases beyond W..
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To summarize, the optimal relationship (Eq. 7) be-
tween mass and time of emergence implies that under
the assumptions of Egs. 1 and 2,

a  Pg(W)

7.1 w-w MM

(13)

In order to plot this relationship, it is simplest to solve
for T

_ a(W — W)
© Be(W) — (YW — W)’

(14)

The right-hand side of Eq. 14 vanishes at W = W,
and it approaches a/u(W) if g(W) — 0. Therefore T =
T. where W = W_, and T decreases as W increases.
Fig. 1 shows this relationship for 7, = 1, W, = 0.1, k
=1,r=0.1,a=0.1,8=1and u = 0.02.

The preceding theory describes a common conflict
within life histories; the benefits attained by reducing
the time to reproductive maturity are offset to some
degree by the costs of reduced pre-reproductive growth.
In this particular example the payoff (maturity and
reproduction) occurs at the time of habitat switching.
The payoff period is constrained to a season. Within
this season, payoffs depend upon both mass and time
of habitat switching.

We have chosen to impose a univoltine life cycle,
where all individuals must emerge within the current
season. We believe this is a reasonable approximation
for our focus on end-of-season phenomena. If we were
to allow smaller individuals to delay reproduction until
the following year, their time to reproduction would
nearly double, as would their probability of mortality.
If we were to allow a bivoltine life cycle, the advantage
to early reproduction would increase dramatically since
a second generation would now be possible for early
reproducers. In fact, seasonal declines in size at emer-
gence also occur in bivoltine mayfly populations (Van-
note and Sweeney 1980).

We expect the qualitative conclusions of this theory
to apply in many diverse life-history settings, when the
following conditions are met. First, the opportunity to
switch from one life history mode to another is con-
fined to a season. Second, state (e.g., mass, fat reserves
etc.) at the switch is related to future fitness. Third,
early switches are associated with higher future fitness.
Fourth, a delay in shift increases the state of that in-
dividual. The shift in life history mode need not include
a shift in habitat use per se. Other life history switches
may include those from a pre-reproductive to a repro-
ductive phase, or from an active phase to an inactive
phase such as hibernation or diapause. For example,
consider an insect facing an upcoming winter, where
overwinter survival requires diapause and is a function
of fat reserves. Here, an early switch to diapause de-
creases the probability of winter arriving prior to dia-
pause but decreases the level of an individual’s stored
fat. We would expect individuals entering diapause
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early to have higher fat stores than those entering dia-
pause late.

AMPHIBIAN METAMORPHOSIS: AN EXAMPLE OF
GROWTH IN Two HABITATS,
WITH EXPLOSIVE BREEDING

The preceding theory suffices for life histories where
significant growth does not occur in the second habitat.
If significant growth does occur in the second habitat,
optimal strategies must include a dependence on growth
and mortality rates in the second habitat. Early dis-
cussions of amphibian life histories portrayed the lar-
val aquatic stage as one devoted to growth, while the
terrestrial stage included reproduction and dispersal
(Wilbur and Collins 1973, Wassersug 1975, Wilbur
1980). If this were an accurate portrayal, then the ar-
guments we have presented for mayflies would also be
applicable to amphibians.

However, Werner (1986) presented data that show
that significant (and in some species the majority of)
growth occurs in the terrestrial stage. He has used Gil-
liam’s (1982) theory to determine a size at metamor-
phosis that maximizes the “instantaneous population
growth rate.” This theory takes into account growth
and mortality rates in the two habitats. However, it
assumes reproduction over an infinite time horizon
rather than a well-defined season.

Earlier we have assumed that the amphibian pre-
reproductive period may be fixed (Ludwig and Rowe
1990). With such a time constraint we expect some
variation in both size at and time of metamorphosis
(Ludwig and Rowe 1990). Variation in both size at and
time of metamorphosis is consistent with the amphib-
ian literature (e.g., Wilbur and Collins 1973, Collins
1979, Smith 1987, Semlitsch 1988), but it is not ac-
counted for in the theory of Gilliam and Werner. In
this section we apply this time constraint to two ex-
amples taken from Werner (1986) to explore in more
detail the effects of time constraints on the size at and
timing of metamorphosis. We also present a case from
Ludwig and Rowe (1990) for comparison with results
in the following section. An additional example of
growth and mortality curves is considered in Appendix
A. Optimal strategies are determined by means of an
analytical solution to this dynamic optimization prob-
lem. For clarity, solutions for each suite of conditions
are presented in graphical form. The switch curves are
described and the underlying processes discussed in
the text, while the mathematical principles used are
explained briefly here. Details of the solution are given
in the Appendices.

Basic assumptions

We consider pre-reproductive foragers that can switch
from one habitat to another. Individuals start in habitat
1 (aquatic) and reproduce in habitat 2 (terrestrial).
Habitats are characterized by mass-dependent rates of
energy gain and mortality. For our purposes we will
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we 02 04 06 0.8 1.0
TIME (t)

Fic. 1. Optimal size and time for mayfly emergence, where
fitness is a positive function of mass and a negative function
of time at emergence.

consider predation as the sole source of mortality. Time
constraints are introduced by assuming that the pre-
reproductive period is fixed (e.g., Ludwig and Rowe
1990): reproduction occurs at a fixed time 7. This latter
assumption differs from the assumptions of the mayfly
emergence section (see Mayfly emergence. . .: Formu-
lation of the model, above). The discrepancy between
these assumptions is removed in the second amphibian
section (Amphibian metamorphosis: . . . growth in two
habitats, with prolonged breeding, below). Potential re-
productive success depends on mass at 7, and there is
a minimum mass below which no reproduction is pos-
sible. The objective of each forager is to survive until
T with a high potential reproductive success.

We consider only a portion of the life history, where
T, < t < T. At the start of our considerations (t = T,)
all individuals are still in habitat 1, but they have a
range of sizes. This range in sizes may be the result of
different birth dates (in which case larger individuals
are older) or by random differences in growth rate early
in the life history. Thus, individuals who switch hab-
itats early in chronological time (with reference to 7)
may actually be older individuals.

Application of dynamic programming

If both growth and predation are higher in one hab-
itat than the other, then possibly there is a tradeoff
between growth and survival. Growth rate measures
mass gain per unit time (in units of grams per day),
while survival rate has units of individuals per indi-
vidual per day. These two quantities cannot be com-
pared directly, since their units are different. A “com-
mon currency” is the effect upon expected future
reproductive output f{w, t). Note that / depends upon
current state w and the time ¢. Once a strategy of habitat
shifting has been determined, f{w, ¢) can be defined as

Sflw, 1) = ROMNS(w, 1),
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where W is the final mass achieved by an individual
of mass w at time ¢, R(W) is the reproductive output
(number of viable offspring) produced by a female of
mass W at time T, and S(w, ) is the probability of
survival to reproduce, for an individual of mass w at
time ¢. .S and W depend upon both w and ¢, since the
optimal strategy depends upon these quantities.

The loss of expected fitness per unit time due to
mortality is u(w){lw, £). The rate of gain of expected
fitness due to growth is g(w)df7dw. Therefore the net
rate of expected fitness gain in a given habitat is
g(w)af/dw — w(w)f. The maximum principle of dynam-
ic programming ‘states that the quantity f{w, ¢) will be
maximized if the habitat is chosen to maximize the
latter quantity. Notice that the units balance in this
expression, since the ratio (1/f)df7dw has the same units
as u/g. We conclude that the switch point must satisfy

e) )
&i(w) é — (W) = gy(w) % — ww)f, (15)

or, by rearranging,

(W) — w(w) _ 1 9f

=_ = 16
&w) — g(w) (16)

fow’

This is the main result of dynamic programming. Eq.
16 is more complicated than a simple rule of mini-
mizing u/g, but it is more generally applicable, at least
if f{iz, w) can be determined. A thorough discussion of
dynamic programming and its application to problems
in behavioral ecology, e.g., habitat switching, is given
in Mangel and Clark (1988).

The left-hand side of Eq. 16 depends only upon w,
but the right-hand side is more complicated. The com-
putation of f and df7dw leads to some mathematical
theory, which is provided in Ludwig and Rowe (1990)
and Appendix A. The result of that theory is that a
certain quantity is constant (conserved) along a given
individual’s life history. The conserved quantity in the
present case is

= gz}W) % = (W)
This may be interpreted as the increment in relative
fitness per unit time. Using the fact that &(w, ¢) is con-
stant along life-history trajectories, we can solve for
the right-hand side of Eq. 16 in terms of the final mass
W and the corresponding reproductive output R(W).
The switching condition now takes the form

Qw, 1) a7)

wa(W) — (w)

S m = gm0
1 dR
=gz(W)Wd—W—#z(W), (18)

as is shown in Appendix A. This consequence of Egs.
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16 and 17 relates the switching mass w to the mass at
reproduction W. It can be solved graphically for spe-
cific assumed forms of the growth and mortality rates.

Two examples where the difference in
w/g changes sign

Werner (1986; see also Werner and Gilliam 1984,
Werner 1988) suggests that size-specific growth rates
(g) for the aquatic (habitat 1) and terrestrial (habitat
2) stages of amphibians may take the form of parabolas
that cross (Fig. 2a). If predation rates () are equal in
both habitats, then the optimal strategy is to choose
the habitat that provides the highest growth rate. If we
define W as the size at which the two growth rates are
equal, as in Fig. 2a, then we expect each individual to
switch habitat when its mass reaches w. This argument
is valid whether time constraints are introduced or not.

If predation rates are relatively high in habitat 2 (u,
> u,), then we expect individuals to delay switching.
Hence the optimal switch size will be greater than w.
Similarly, if u, > u,, then the optimal switch size will
be less than w. In both cases individuals have forgone
growth in order to reduce exposure to predation. If
there are no time constraints, then all individuals switch
at the same size, according to the theory.

Here we show that the introduction of time con-
straints leads to optimal switch sizes that vary. In gen-
eral, the magnitude of deviation from w of the optimal
switch masses will be some increasing function of size
at T,. A detailed theory appears in Appendices A and
B. Here we describe the results of the analysis (Figs. 2
and 3) and the major processes that lead to the results.

Consider a case where u, > u, and growth rates cross
at some size w (Fig. 2a and b). If there is a critical
minimum mass W, below which reproduction is im-
possible, then there is a critical initial mass w,, such
that individuals who start at w, can just reach mass W,
by time 7 if they maximize growth by switching hab-
itats at mass w. Higher predation rates in habitat 2
discourage individuals from shifting to habitat 2. The
smallest individuals (at mass w.) do not have the op-
portunity to delay shifting, since any strategy that de-
viates from growth maximization will eliminate the
possibility of reproduction. On the other hand, all in-
dividuals starting at masses greater than w, could forgo
some growth in order to delay exposure to predation
in habitat 2; if individuals who start at large masses
were to switch habitats when they reach mass w, then
they would spend an unacceptably long time in the
more dangerous habitat 2. The switching size w, will
be an increasing function of mass at T, (Fig. 2b).

The preceding argument does not settle the issue of
whether switching at size w, actually leads to declining
shift masses through the season. However, the argu-
ment in Appendix B shows that the time of switching,
t,, decreases as the initial mass increases in cases where
growth curves cross and u,(W) — w,(w) is small and
positive. Alternatively, if uy,(w) — u,(w) is small and
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RATES (g,u)

MASS

T

04 08 1.2 16
TIME

Fig. 2. (a) Growth (g) and mortality (u) rates in the two-
habitat model where growth rates cross and mortality in hab-
itat 2 is greater than in habitat 1. Figure shows growth rates
in habitat 1 (——) and habitat 2 (——-), and mortality rates
in habitat 1 (=) and habitat 2 (----- ). w is the expected
optimal habitat-switch size if mortality rates were equal in
the two habitats. (b) Optimal time and size at metamorphosis
(CEEEE ) for growth and mortality rates shown in Fig. 2a. Solid
lines show individual growth trajectories in habitat 1 (below
dotted line) and habitat 2 (above dotted line). T indicates the
payoff time, where reproduction occurs. W, shows the critical
minimum mass at 7 for successful reproduction.

T T

2.0 24

negative, then shift masses will increase through the
season.

An example of this latter case where u, > u, is shown
in Fig. 3. Growth rates are the same as those in Fig.
2a, but the predation rates have been reversed. In this
case we expect the high predation rates of habitat 1 to
encourage an early shift to habitat 2. The smallest in-
dividuals starting at w, must simply maximize growth
and shift at w, or they will not make the minimum size
for reproduction at 7. Larger individuals at T, will
shift early in time and at masses below w. The devi-
ation from W is again an increasing function of mass
at T, for reasons stated above.

If uy(w) — uy(w) is large, a more complicated theory
is required. Such a theory is described in Appendices
A and B. A variety of qualitative features is possible,
but details will not be given here.

In summary, these examples illustrate how time con-
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straints affect optimal shift sizes in life histories that
include significant growth in both habitats. The un-
derlying mechanism is that variation in mass among
individuals at any time during the pre-reproductive
period is preserved to some degree at the payoff time
T. Therefore, variation in size at T, implies variation
in fitness: small individuals do not catch up. On the
other hand, in systems without time constraints catch-
ing up is not an issue.

As in the insect-emergence (mayfly) example, rela-
tively large individuals at 7, have relatively high fit-
ness. Incremental gains in mass for these individuals
have relatively little impact on fitness at the payofftime
T. Given the relatively low benefits stemming from
additional growth by large individuals, we expect larger
individuals to trade growth in order to avoid predation
to a greater degree than smaller individuals. These
mechanisms lead to predictable variation in optimal
shift masses that scale with time. It is interesting to
note that the effect of these tradeoffs is to reduce the
variation in body size from T, to T (Figs. 2 and 3).
Larger individuals are more likely to survive to 7, but
have forgone potential growth in the process. Smaller
individuals are less likely to survive to 7, having placed
a higher relative value upon growth in the face of pre-
dation.

This leads to two major points: (1) Initially large
individuals are more likely to slow growth to avoid
predation than initially small individuals. (2) The effect
of switching at variable masses is to reduce the range
of masses from the start of a period (7,) to the final
time (7)), while increasing the variation in mortality
among individuals who start at a variety of body mass-
es. The decrease in size range and the increased vari-
ation in mortality rates independently affect point 1
above. By the final time, those that started off large
have increased their probability of survival to the final

1.2
0
”n
<
= 0.8

0.4+

T
0.4
TIME
FiG. 3. Optimal size and time at metamorphosis (- - - )

for growth rates identical to and mortality rates reversed from
Fig. 2a. Solid lines show individual growth trajectories in
habitat 1 (below dotted line) and habitat 2 (above dotted line).
The payoff time T does not appear in this figure—it is off to
the right.
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FiG. 4. (a) Growth (g) and mortality (i) rates where the
ratio of u to g does not vary with size, and both rates are
greater in habitat 2. Figure shows growth rates in habitat 1
(—) and habitat 2 (---), and mortality rates in habitat 1
(—) and habitat 2 (----- ). (b) Optimal time and size at
metamorphosis (- - -+ ) for growth and mortality rates shown
in Fig. 4a. Solid lines show individual growth trajectories in
habitat 1 (below dotted line) and habitat 2 (above dotted line).
T indicates the payoff time, where reproduction occurs.

time by avoiding predators at the cost of reduced growth,
while the opposite is true for individuals who started
off small.

An example where the difference in u/g doesn’t
change sign

It may happen that growth is always higher in one
habitat than the other. There is a possible tradeoff be-
tween growth and mortality if the mortality rate is
always higher in the same habitat. In such a case, it
may be optimal to spend the entire pre-reproductive
period in one habitat or the other. The situation is
more complicated if switching from one habitat to the
other is optimal. We first consider the case where not
all individuals find it optimal to switch habitats by the
final time 7. We consider only the subset consisting of
individuals who actually switch to habitat 2. A case
where u, > u, is depicted in Fig. 4. Here the growth
and mortality rates in the two habitats are proportional
(Fig. 4a). This example was used earlier (Ludwig and
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Rowe 1990) to illustrate optimal habitat shifts in spite
of u/g ratios that do not vary with mass. The corre-
sponding switching curve is shown in Fig. 4b. Individ-
uals who start out heavier switch habitats at a larger
size than those who are initially lighter. They also switch
at a later time than lighter ones, to avoid predation
risk in habitat 2.

AMPHIBIAN METAMORPHOSIS: AN EXAMPLE OF
GROWTH IN Two HABITATS, WITH PROLONGED
BREEDING

In contrast to the assumption of explosive breeding
presented above, some amphibians have relatively
prolonged breeding periods (e.g., a few weeks or
months). In these species it is reasonable to assume an
advantage to early breeders. For example, early larvae
may be exposed to less competition than later larvae
(Alford and Wilbur 1986, Wilbur and Alford 1986).
In this final case we incorporate a prolonged breeding
period with priority effects into the theory presented
in the first amphibian section, above. The exercise is
analogous to combining our mayfly emergence ex-
ample (Fig. 1) with the earlier amphibian model pre-
sented (Fig. 4).

The result of combining the assumptions of the pre-
vious two major sections is surprisingly simple. One
calculates the optimal time for reproduction by the
method of the mayfly section: the key equation is Eq.
7. Then one computes pairs of switching points w and
final masses W by the method of the first amphibian
section and Appendix A, using Eq. 18. Finally, one
computes the time for switching from Eq. A.9, which
in the present case assumes the form of Eq. C.9. Details
are given in Appendix C. The effect of all this is to shift
the switching curves in the first amphibian section
backwards in time by an amount given by 7, — T, as
determined from Eq. 14. This shift will be strongest in
individuals that start large, for the same reasons as
were given in the mayfly example. The result of this
shift is to transform Fig. 4b into Fig. 5. A corresponding
transformation can be carried out for any of the other
figures of the first amphibian section or Appendix A.

The inclusion of an early reproductive advantage
into this example leads to earlier time of and smaller
size at metamorphosis in individuals that are large
early in the season. High growth rates in habitat 2 now
have the additional advantage of decreasing time to
reproduction. Larger individuals are in the best posi-
tion to take advantage of this, since smaller individuals
already must take relatively high risks to gain mass
prior to reproduction. If early reproduction leads to a
substantial fitness advantage, we expect declining switch
curves for reproduction, and, in the cases considered
above, declining switch curves for metamorphosis.

DiscussioN

The present theory demonstrates that a variety of
time constraints in complex life cycles leads to optimal
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habitat-shift sizes that vary with time. This conclusion
holds whether reproduction occurs at the time of shift
to a second habitat or follows a growth period in the
second habitat. The common mechanism for this phe-
nomenon is our assumption that the reproductive pe-
riod is localized. Under this assumption, any variation
in size between individuals at some time during the
pre-reproductive period will be preserved to some de-
gree at the payoff (reproduction) time. Therefore, vari-
ation in size at this time reflects variation in fitness.
We expect individuals with high fitness to take less
risks for an incremental gain in mass.

We have represented the risks of gaining mass in two
general forms. In the first case, organisms grow in one
habitat and then switch to a second habitat at maturity
to reproduce. Fitness depends on both mass at and
time of maturity. Here, remaining in the first habitat
to gain mass will delay maturity. In the second case,
growth occurs in both habitats and the reproductive
period is fixed to some brief period following growth
in the second habitat. Fitness depends only on mass
at the time of reproduction, but gaining mass carries
a risk of mortality due to predation. In the third case
the earlier two cases are combined.

In this section we discuss: (1) the implications of
these models for the interpretation of seasonal varia-
tion in size and timing of metamorphosis, (2) the con-
trasting predictions of this theory with previous theory,
and (3) the generality of time constraints in the life
histories of organisms in seasonal environments.

INSECTS

Variation in size at metamorphosis over the repro-
ductive season of insects is common (e.g., Ide 1935,
Clifford and Boerger 1974, Sweeney and Vannote 1978,
Vannote and Sweeney 1980, Forrest 1987). Mayflies
are a convenient group for studying this problem, since
metamorphosis to adult includes a habitat shift from
aquatic to terrestrial and reproduction occurs in a single
bout within hours or days of emergence. Therefore, the
size at and time of emergence is equivalent to size and
age at maturity and reproduction. Phenotypic plasticity
in size at emergence has been studied primarily as a
phenomenological problem. For example, temperature
changes often affect growth and development rates dif-
ferently, so that size at maturity must change (Sweeney
and Vannote 1978, Vannote and Sweeney 1980). In
mayflies which emerge in summer, the warmer tem-
peratures of late summer may increase development
rate relative to growth rate, resulting in declining size
at emergence. Implicit in these arguments is the as-
sumption that the single factor that scales with fitness
is size. Therefore, late small emergers are victims of a
fixed effect of temperature on development and growth
rates.

We suggest that declining size at emergence is an
adaptive response to the conflict between size and age
at maturity (emergence). Individual larvae of relatively
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MASS

TIME

Fic. 5. Optimal time and size at metamorphosis (- - -- )
and reproduction (— — -) for growth and mortality rates shown
in Fig. 4a. Solid lines show individual growth trajectories in
habitat 1 (below dotted line) and habitat 2 (above dotted line).
This case differs from Fig. 4b only in our assumption of an
advantage to early reproduction rather than a fixed payoff

time (7).

large size will tend toward emerging early since the
relative benefits of gaining mass decrease with present
mass, while smaller larvae early in the season have
much to gain by increasing mass. Later in the season
smaller larvae will emerge, since the relative cost of
delaying maturity increases as the season progresses.
Our argument does not compete with the phenome-
nological view. In fact, the differential response of de-
velopment and growth rates to temperature may have
evolved in response to selection for optimizing size at
and time of emergence (Forrest 1987).

Proposed proximate causes for seasonal variation in
size at maturity in insects includes seasonal variation
in resource levels or quality (e.g., Palmer 1984, Forrest
1987). Decreases in resource level at some time in the
season will also lead to decreased size at emergence in
the model we have presented. Lowered growth rates
decrease the benefit (growth) of delaying maturity,
without changing the costs of delaying maturity. Sim-
ilarly, increased predation rates in the larval habitat
will lead to smaller size at emergence for the same
reason.

AMPHIBIANS

Background. —Traditional explanations for the evo-
lution of amphibian life histories have focused on the
larval growth phase, with little consideration of growth
in the second habitat (Wilbur and Collins 1973, Was-
sersug 1975, Wilbur 1980). In this view, larvae have
evolved to take advantage of the rapid growth oppor-
tunities of the aquatic habitat, while the function of
the terrestrial phase is dispersal and growth. Wilbur
and Collins (1973) introduced a model for predicting
size at and time of metamorphs based on this view.
The Wilbur-Collins model predicts that larvae assess
recent growth history and set development rates based
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on recent growth. Under high growth rates, larvae slow
development relative to growth, leading to increased
size at emergence. In low-growth conditions the alter-
native occurs. There is strong evidence that larval an-
urans do adjust development rates based on recent
growth history (Alford and Harris 1988). Based on
evidence of significant growth of amphibians in the
terrestrial habitat, Werner (1986) introduced a model
that placed greater emphasis on growth in the terrestrial
phase. Werner’s model also incorporates the idea of
tradeoffs between growth and mortality, where increas-
ing mass carries a mortality risk due to predation. His
prediction was that larvae will metamorphose at a size
where increments of growth in the terrestrial habitat
come with less risk of mortality than those in the aquat-
ic habitat. Individuals choose habitats where the ratio
of mortality rate (u) to growth rate (g) is minimized
(Gilliam 1982, Werner and Gilliam 1984). This model
also predicts increased size at metamorphosis when
growth rates are increased in the aquatic habitat. It
contrasts with the Wilbur-Collins model in predicting
increased size of metamorphs if growth rates are re-
duced in the terrestrial habitat or if mortality rates are
decreased in the aquatic habitat.

Time constraints.— Theory presented in the two ma-
jor amphibian sections shares Werner’s consideration
of growth and mortality in both aquatic and terrestrial
habitats, but contrasts with Werner’s by our inclusion
of time constraints. By assuming continuous repro-
duction over an infinite time horizon, the Werner mod-
el leads to optimal sizes at metamorphosis that do not
vary with time. Therefore, individuals of given size
metamorphosing or reproducing early are of equal fit-
ness to later individuals. In contrast, we introduced a
dependence of individual fitness on both mass and the
time within a season that that mass is achieved. In this
case, optimal size at metamorphosis and reproduction
within a population can vary with time.

We have considered two effects of time constraints.
In the first amphibian section (also in Ludwig and Rowe
1990) we introduced a reproductive period that is fixed
in time, and in the second amphibian section we in-
cluded an advantage to early breeders that is indepen-
dent of size. In both cases growth and mortality rates
depend on size, and reproductive output is an increas-
ing function of mass. The first case is analogous to an
explosive breeder. Here the optimal strategy must bal-
ance survival until the reproductive period and mass
gain. The second case is analogous to a prolonged
breeder, where eggs produced early have some advan-
tage over later eggs (Alford and Wilbur 1986, Wilbur
and Alford 1986). Here, the optimal strategy includes
determination of the age at reproduction. Under both
sets of assumptions optimal size at metamorphosis var-
ies with time, and in the second case size at first re-
production also varies with time.

In both cases the ascending or descending character
of optimal time and mass trajectories (switch curves)
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for metamorphosis depends upon growth and preda-
tion rates in the two habitats. The prediction of this
inclination requires a detailed knowledge of these rates,
although some generalities emerge.

For amphibians, growth rates in the two habitats are
expected to cross as shown in Fig. 2a (Werner 1986;
see also Werner and Gilliam 1984, Werner 1988). Un-
der this assumption and the assumption of no advan-
tage to early breeders (see the first amphibian section),
prediction of the inclination of the switch curves is
straightforward. If mortality rates are higher in the ter-
restrial habitat, then we expect descending switch
curves; otherwise ascending switch curves will result.
For taxa where growth curves do not cross (e.g., Figs.
4a and Ala) more details about growth and mortality
are required, and predictions of inclination are more
complex.

Our distinction between ascending and descending
switch curves will be altered if the time of reproduction
is not fixed. If there are substantial increases in fitness
for early breeders, then we generally expect to find
descending switch curves for both metamorphosis and
reproduction.

Predictions.—The basic predictions of this theory
conform to the data on amphibian life cycles. First:
size at metamorphosis varies in a systematic fashion
throughout the season (Wilbur and Collins 1973, Col-
lins 1979, Smith 1987, Semlitsch et al. 1988). Second:
early reproducers are typically larger than later repro-
ducers (e.g., Smith 1987, Semlitsch et al. 1988). In
contrast to earlier theory (Wilbur and Collins 1973,
Werner 1986), we suggest that this variation may reflect
an adaptive response to time constraints. In these ear-
lier theories, systematic seasonal variation in size at
metamorphosis is accommodated only if a systematic
seasonal variation in larval growth or mortality occurs.
Seasonal variation in size at reproduction is not con-
sidered in these theories.

Our models of amphibian life histories share some
qualitative predictions with the Werner model con-
cerning variation between populations in size at meta-
morphosis. For example, a low growth rate or high
predation rate within the aquatic habitat will favor a
small size at metamorphosis (also predicted by the
Wilbur-Collins model). We have shown this graphi-
cally in an earlier paper (Ludwig and Rowe 1990), and
the same arguments apply here. There is evidence that
amphibians do respond in such a manner. In experi-
mental populations, when high densities of larvae lead
to low growth rates, metamorphs are small (e.g., Wilbur
1977). High predation rates on Bufo americanus, by
either the dragonfly Anax junius or the newt Notoph-
thalmus viridescens dorsalis, result in early and small
metamorphs (Wilbur 1988).

We have not explicitly considered changes in size-
specific growth rates or predation rates during a season.
Such changes probably occur in some amphibian pop-
ulations. Decreases in population density late in the



April 1991

season, due to metamorphosis of some portion of the
population or due to predation, will lead to increased
growth rates of the remaining larvae released from
competition (Collins 1979, Alford and Harris 1988).
Alternatively, resource levels may decline with season
independently of larval density (Wassersug 1975, Wil-
bur 1980, Alford and Harris 1988). The effects of this
within-season variation in growth rates (or predation
rates) on size at metamorphosis can be predicted with
our models (with similar results) by considering the
first metamorphs under one growth rate and the re-
maining metamorphs under a second growth rate.
Our predictions about the effects of changes in growth
rates within the season, however, cannot be distin-
guished from those of the Wilbur-Collins model or
Werner’s model. For example, all three models predict
that a gradual decrease in larval growth rate will tend
to decrease size at metamorphosis of the remaining
larvae. In contrast to the Wilbur-Collins model, Wer-
ner’s and ours predict variation in metamorph size due
to variation in predation rates on larvae. Wilbur’s (1988)
experiments with Bufo (see above) support this asser-
tion. Predictions from our theory contrast with Wer-
ner’s in two important ways; first, we predict habitat
shifts in some cases when the ratio u/g does not differ
between habitats (see also Ludwig and Rowe 1990),
and second, we expect intrapopulation variation in size
at metamorphosis even when larval growth and mor-
tality rates are stable throughout a season. An appro-
priate test would be to compare temporal phenotypic
variation in size at metamorphosis in individuals fol-
lowing stable growth and mortality schedules. Alter-
natively, potential cues to time, such as photoperiod,
must be manipulated. We would expect to find riskier
behavior of individuals that perceive a reduced time
until reproduction. We are not aware of any such tests.

SUMMARY

Major events in the life history of organisms are often
constrained to seasons. Some examples include sea-
sonal reproduction in amphibians, fish, and birds, and
emergence and diapause in insects. In these examples
the state (e.g., mass or nutritional status) of individuals
approaching these events may be related to fitness.
Furthermore, seasonality of a life-history event implies
that there is a good time and a bad time to undertake
that event. In short, an organism’s state as well as the
time that that state is achieved are the important vari-
ables in seasonal life histories. Dynamic models pro-
vide an excellent and under-utilized tool to explore the
optimal solutions to these state and time problems in
life histories.

Both numerical and analytical approaches to dynam-
ic programming can be illuminating. The numerical
approach is simpler than our analytical methods, and
can be applied to a wide variety of problems (Mangel
and Clark 1988). Nevertheless we believe that superior
insight sometimes may be gained from an analytical
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approach. For example, our Fig. 4 enables one to con-
nect various qualitative features in the life-history tra-
jectories to assumptions about the growth and mor-
tality curves. Our solution method extends to many
other problems where time ¢ does not appear explicitly
in the coefficients of the dynamic-programming equa-
tion. A theory such as ours for a two-stage decision
process has not appeared previously in the ecological
literature, as far as we are aware. The classical theory
of the calculus of variations and of optimal control is
a great source of ideas, methods, and solutions. We
have tapped only a tiny portion of it.
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APPENDIX A
DyYNAMIC PROGRAMMING AND SWITCHING CURVES

In this Appendix we set out our assumptions and the der-
ivation of our conclusions in detail. The theory is an extension
of that presented in Ludwig and Rowe (1990), but the present
assumptions are slightly more special. The present treatment
relies upon graphical representations of the growth and mor-
tality rates and the associated switching condition in order to
obtain qualitative results concerning the switching curve and
associated trajectories.

Assumptions about growth and mortality
We assume that growth in the ith habitat is given by

aw

— = &w),

i=1,2.
dt ! ’

(A.1)

Typical growth functions are shown in Fig. 2a. The mortality
rates are u,(w), as stated in the main text (see Mayfly emer-
gence: . .. growth in a single habitat: . . . Mortality).

Assumptions about final fitness

We assume that the fitness (final reproductive output) of
an individual is determined by her mass at the final time 7'
as follows:

EW) = a(W — W.y, (A.2)

where £ is a shape constant and the constant a is a scale factor
as in Eq. 1. We shall consider reproduction at a fixed time T
in the present treatment, in contrast to the mayfly emergence
section of the text. The extension to the more general case is
given in Appendix C.

Dynamic programming equation

The dynamic programming equation for the fitness function
A, w) corresponding to these assumptions was derived in
Ludwig and Rowe (1990). In the ith habitat it is

af af

= + — - =0.
5 T &M Fw mwW) f
The switch between the habitats is predicted along a curve in
the (w, ¢) plane where

(A.3)

<]
le:(w) — &(W)] 6_£ = W) — WS =0. (A4)

In the following, w and ¢ will denote the solution of Egs. A.3
and A4, ie., (w, ?) is the switching point for the trajectory
on which it lies. We shall consider only the case where switch-
ing is from habitat 1 (aquatic) to habitat 2 (terrestrial).

Equation of the switching curve

It was shown in Ludwig and Rowe (1990) that the quantity
2(w) given by

_ &:(w) a_f
f(w) ow

is constant along solutions of Eq. A.1. We use the subscript
corresponding to the second habitat in Eq. A.5 and the fol-
lowing equations, since we are considering only trajectories
that terminate in habitat 2 at time 7. At the final time 7T it
follows from Eq. A.2 (using R instead of £, and otherwise
using capital letters to denote quantities at time 7) that
E'W)
R =G —_ =
W) (W) EOW)

R(w) = k(W) (A.5)

oA W)

_ B _
= &W) o — ().

c

(A.6)

Note that this quantity is the same as was defined in Eq. 12.
On the other hand, the ratio involving fin Eq. A.5 can be
determined from Eq. A.4 at the switching point. After sub-
stitution from Eq. A.4, Eq. A.5 becomes

(W) — pi(w) _

Q =g, A.7
) = 800 D — e A7

pa(W).

Since f(w) is constant along solutions of (A.1), we must have

2Aw) = R(W), (A.8)
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Fig. Al. Figs. Ala and Alc show assumptions about
growth and mortality rates and about optimal fledging size
and time (respectively) analogous to Ydenberg (1989). Fig.
A1b shows data used to compute Alc from Ala. The details
are given in Appendix A.
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where w is the mass at which switching occurs, and W is the
final mass attained.

Construction of the life-history trajectories

Life-history trajectories may be constructed as follows. First
one must determine which portion of the boundary where ¢
= T corresponds to habitats 1 and 2. This may be done by
examining the sign of Eq. A.4 at the boundary. Details are
given below. The second step is to find pairs of values (w, W)
that satisfy the switching condition (Eq. A.8). This may be
done graphically, as is shown below. Having found such a
pair, one may construct a trajectory that finishes in habitat
2, and that connects (W, T) with (w, t). The switching time,
t, is determined by solving

Yo
T—1t= f aw',
w &(W)

which follows from Eq. A.1. Having found (w, f), one may
then continue backwards in time to find the trajectory orig-
inating in habitat 1 that switches at (w, ¢). These steps will
now be explained in more detail.

(A.9)

Optimal habitat at the final time

Eq. A.4 may be evaluated using Eq. A.2 to decide which
habitat is optimal at the final time 7. It becomes

S(W) =[g(W) — g.(MBW — W y~!
= (W) — m(MI(W — Wy, (A.10)

If S(W) > 0 then habitat 2 is optimal; otherwise habitat 1 is
preferred. For our purposes, we wish to check this condition

while solving Eq. A.8. If g,(W) — g,(W) > 0, then S(W) >
0 implies that

B wlW) — (M)
W-W. T eW) - e (W)

which in turn implies that R(W) > Q(W). Therefore if R(W)
> Q(w) and g,(W) > g,(W), then habitat 2 is preferred on the

(A.11)

LOCKE ROWE AND DONALD LUDWIG

Ecology, Vol. 72, No. 2

corresponding portion of the line 1 = 7. Otherwise habitat 1
is preferred. On the other hand, if g,( W) < g,(W), then habitat
2 is preferred where R(w) < &(W). These conditions are used
below.

Construction of pairs (w, W)

In order to solve Eq. A.8, the graphs of the two sides 2(w)
and R(w) may be plotted on the same axes (e.g., Fig. Alb).
The arctangents of each side are plotted, since either side may
be infinite at special points. The graph of 2w) is drawn with
a solid line, and the graph of R is dotted. In Fig. Alb, the
dotted curve has a vertical asymptote at W = W._, since the
denominator of Eq. A.6 vanishes there. The solid curve has
a local maximum, which is caused by a local minimum of
the ratio g,(w)/g,(w), which may be discerned from Fig. Ala.
This local minimum in effect creates a “window” of masses
for which habitat 1 is superior in view of the higher mortality
rate in habitat 2. This “window” is analogous to a region
where the ratio u,/g, is lower than u,/g,, although our switch-
ing criterion (Eq. A.8) is different from a minimization of u/g.
Points on the dotted curve where habitat 2 is preferred ac-
cording to the criteria derived above are drawn with circles
(Fig. A1b), to distinguish them from the others. In the case
of Fig. Alb, habitat 2 is preferred along almost the entire W
axis, as is clear from Fig. Ala. Horizontal lines that connect
the solid and the dotted curves from left to right correspond
to feasible pairs (w, W), i.e., pairs where W > w and habitat
2 is preferred at W. Note that the solid curve has a maximum,
and hence the corresponding values of W have a minimum.
The horizontal segments could be extended back to the left-
most branch of the solid curve, but they would not correspond
to optimal trajectories. The corresponding features appear in
Fig. Alc. The precise shape of the switching curve is difficult
to discern from Fig. Ala; it depends upon the result of the
integration in Eq. A.9. Graphs such as Fig. A1 may be used
to understand and predict the effects of modifying assump-
tions, e.g., about growth and mortality rates.

APPENDIX B

DETERMINATION OF THE SWITCHING CURVE
WHEN GROWTH CURVES CROSS

The theory of Appendix A has special implications near a
point W, where the growth curves cross. We wish to determine
the slope of the switching curve near the critical point W_.

We begin with Eq. A.8, which can be rewritten in the form

w— W,
BG(W) — w(WYW — W)

_ &) — g(w)
EWka(w) — i (W)] — p(w)lg(w) — gi(W)]”

(B.1)

At W = W, the numerator of the left-hand side of Eq. B.1
vanishes. Therefore the numerator of the right-hand side must
also vanish. Thus we see that W = W_ corresponds to w = W,
as was pointed out in the first amphibian section of the text.
In order to determine the slope of the switching curve at this
point, we require the derivatives of Wand T — ¢ as w varies
near w. If we regard W as a function of w as determined by
Eq. B.1, and differentiate Eq. B.1 with respect to w at w, the
result is

1 dw_ 1 ') —&/0d)
BGAW,) dw g (W) p(W) — (W)
If we perform a similar differentiation of Eq. A.9, the result is

(B.2)

aT -1 1 aw 1
= —_—— . B.3
dw G dw  gw) (B3
If Eq. B.2 is substituted into Eq. B.3, the result is
AT -1 1 [gﬂ@—gam ]
= —-1]1. B.4
PR L e—— ®4

The sign of d(T — t)/dw is determined by the sign of the
quantity in brackets. In general, it can take on either sign, but
note that g, — g, > 0 at w = W, since the difference g,(w)
— &(w) increases at w. Therefore if u,(w) — w,(w) is small,
then the quantity in brackets will be positive. We conclude
that 7 — ¢ increases as w increases, and hence ¢ decreases as
w increases. This situation is depicted in Fig. 2. It is possible
for the switching curve to bend back if w becomes sufficiently
large.

Construction of the switching curve in case p, < u,

If the sign of u,(W) — u,(w) is negative, a similar theory
applies. We must have w < w in order for W > W._.. The
quantity in brackets in Eq. B.4 is always negative in this case.
Therefore T — t increases as w decreases, and hence ¢ decreases
as w decreases. The corresponding result is depicted in
Fig. 3.
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APPENDIX C

VARIABLE TIME OF REPRODUCTION

We can combine the effects of time-dependent value of
reproductive output and habitat switching. A typical life his-
tory begins in the aquatic habitat, switches to the terrestrial
one at mass w and time ¢, and then reproduces at mass W at
time 7. The time T is not assumed to be fixed, as in the first
amphibian section of the text, but is determined as in the
mayfly emergence section. Thus 7= T(W), from the solution
of Eq. 6 or Eq. 13. Are the derivations of Appendix A still
valid?

Let the final reproductive value be

FW) = CITWIEW). (c.1
The final condition on fiw, ¢) is now
AW, T(W)] = F(W). (C.2)
It follows from differentiating Eq. C.2 that
af af
’ -+ — = F'(W). C.3
T(W) =+ 5o = F(W) (©3)

It follows likewise from differentiating Eq. C.1 that
FW) = T(WC[TWIEW) + CIT(W)E'(W). (C.3)
By substitution of Eq. 6, we obtain
FW) =11 - g&(MT'(W)ICE' + T'CEp,(W) (C.4)
When this result is substituted in turn into Eq. C.3, the result is

9 <]
(W) 6_{+ —f =TCEu, + (1 — gT")CE".

3w (C.5)
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On the other hand, Eq. A.3 states that
a a
_f+ gz_f = u,f = u,CE. (C.6)
at aw
If 3f/dw is eliminated between Egs. C.5 and C.6, the result is
a
a—{= CEu, — g,CE'. (C.7)
We conclude that
-19f E
— =g — U, C.8
7 o ng M ( )

In view of Eq. C.6, this is exactly the same result as Eq. A.8.
Therefore Eq. A.8 carries over to the more general case where
time of reproduction varies with body mass, as long as the
time is determined from the optimality condition (Eq. 7).

Since T depends upon W, the switching time ¢ in Eq. A.9
is now given by

Yo
ron - = [ L aw.
%) = ¢ w o & (W) "

The effect of this change is to shift the switching curve back
by a variable amount. This has the effect of converting the
trajectories from those of Fig. 4 to Fig. A2.

(C.9



