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The effect of epistasis on sexually
antagonistic genetic variation

Göran Arnqvist1, Nikolas Vellnow2 and Locke Rowe3
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2Evolutionary Biology, Zoological Institute, University of Basel, CH-4051 Basel, Switzerland
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There is increasing evidence of segregating sexually antagonistic (SA) gen-

etic variation for fitness in laboratory and wild populations, yet the

conditions for the maintenance of such variation can be restrictive. Epistatic

interactions between genes can contribute to the maintenance of genetic var-

iance in fitness and we suggest that epistasis between SA genes should be

pervasive. Here, we explore its effect on SA genetic variation in fitness

using a two locus model with negative epistasis. Our results demonstrate

that epistasis often increases the parameter space showing polymorphism

for SA loci. This is because selection in one locus is affected by allele frequen-

cies at the other, which can act to balance net selection in males and females.

Increased linkage between SA loci had more marginal effects. We also show

that under some conditions, large portions of the parameter space evolve to

a state where male benefit alleles are fixed at one locus and female benefit

alleles at the other. This novel effect of epistasis on SA loci, which we

term the ‘equity effect’, may have important effects on population differen-

tiation and may contribute to speciation. More generally, these results

support the suggestion that epistasis contributes to population divergence.
1. Introduction
The prevalence of sexual dimorphism suggests both a longstanding history of

sexually antagonistic (SA) selection and an ability of the sexes to diverge,

despite a genome that is largely shared. Yet, the presence of constraints on

the independent evolution of the sexes is suggested by current field studies

that often point to ongoing SA selection [1]. Moreover, there is growing evi-

dence of abundant standing genetic variance that is SA, where alleles

favoured in females are disfavoured in males (reviewed in [2,3]). Evidence

of substantial SA genetic variance comes from both laboratory populations

[4–10] and from the wild [11–14].

The presence of SA genetic variation may at first seem difficult to reconcile

with the view that the conditions for protected polymorphism of such alleles

may be restrictive, requiring near equivalent selection between the two sexes

[15,16], unequal dominance of alleles within the sexes [15,17,18] or X-linkage

of the SA loci [19]. However, a number of recent studies suggest that the con-

ditions for maintenance of SA variation may be less restrictive. First, Fry [17]

has argued that unequal dominance effects on fitness between the sexes may

be quite common, which will often lead to heterozygote advantage when fit-

ness is summed across the sexes. Second, in the presence of unequal

dominance, Arnqvist [18] demonstrated that assortative mating for fitness

[20] can expand the conditions for protected polymorphism and increase the

frequency of heterozygotes. Finally, even in the absence of unequal dominance

or assortative mating for fitness, Patten et al. [21,22] demonstrated that the con-

ditions for polymorphism expand when SA variation results from multiple

linked loci because the effective net strength of SA selection increases.

Epistasis refers to the non-independence of genetic effects of two or more

loci upon the phenotype, such that the phenotypic effect of an allele at one

locus depends on the specific alleles at another locus [21–24]. Epistasis between

SA loci has been widely discussed with regards to the evolution of sex
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Figure 1. Epistasis for fitness emerges as a result of concave fitness functions
even when allelic effects on traits are additive. This figure shows two bi-allelic
loci that affect an arbitrary life-history trait in both sexes, where A and B are
favoured in females and a and b in males. Here, allelic effects on the trait are
purely additive in both loci. We make two points. First, the fitness effects of
any single allelic transition will depend on the genetic background. For
example, a transition from bB to BB in females (open circles) will have a
much stronger fitness effect in the aa genetic background (left-hand
arrow) than the AA background (right-hand arrow). Second, when selection
is SA, epistasis acts to ‘even the odds’ in this genetic tug-of-war. For example,
when the male benefit allele at locus A is common or fixed in a population,
selection for the transition bB to BB (left-hand arrow) will be stronger in
females than against this transition in males (filled circles). By contrast,
when the female benefit allele at locus A is instead common or fixed in
a population, selection for the same transition (right arrow) will be
weaker in females than against this transition in males (filled circles).
Thus, selection in one locus in a particular sex is relaxed when alleles at
other loci that benefit that sex increase in frequency. The scenario visualized
here represents a case where sAm ¼ sBm ¼ sAf ¼ sBf ¼ 0.2, hAm ¼ hBm ¼

hAf ¼ hBf ¼ 0.2 and 1m ¼ 1f ¼ 20.1 (table 1).
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chromosomes, where epistatic interactions between SA loci

and sex determining loci select for reduced recombination

and the origin of sex chromosomes [25–27]. Here, we suggest

that epistasis between SA loci should be a general phenom-

enon. We expect that most traits under SA selection are

highly polygenic [1,28]. Among those traits known to be

under SA selection are composite traits, including locomotion

[10], morphology [29,30], reproductive physiology [14] and

life-history traits [31], all of which, no doubt have a polygenic

basis. Given polygenic inheritance and the fact that we often

expect male and female fitness functions to be concave as a

result of sex-specific stabilizing selection [17], epistasis

between SA loci should be pervasive. Even when allelic

effects on a given trait are additive, epistasis for fitness will

result when the fitness function has curvature because the

recruitment of beneficial alleles at additional loci yields

diminishing returns [23,32–36].

For example, imagine a single life-history trait whose

value depends on two loci, and that the fitness surfaces for

males and females are concave and somewhat displaced

from one another (figure 1). Increases in the frequency of

alleles favoured in males at one locus will bring the trait

mean towards the male optimum. Because of the curvature

of the fitness surfaces, however, selection in males for alleles

favoured in males at the second locus will then be reduced

while, at the same time, selection for the alternative alleles

favoured in females will increase. Because of sexual antagon-

ism, epistasis will be negative and selection in one locus will

depend on the allele frequency at the second locus, where an

increase in the frequency of male (female) benefit alleles at

one locus increases the relative selection on female (male)

benefit alleles at the other locus (figure 1).

Negative frequency-dependent selection within loci can

maintain genetic variation that may otherwise be lost

[35–37] and therefore may play a role in the maintenance

of SA genetic variation [38]. The role of positive epistasis

for the simultaneous invasion of SA alleles has been explored

[39–41], but the impact of negative epistasis on the mainten-

ance of SA genetic variation has not. Here, we use individual-

based simulations to explore the role that gene interactions

between SA loci has on the extent and characteristics of SA

genetic variation. Rather than exploring all possible scen-

arios, we provide an analysis of what we suggest is a set of

biologically realistic situations. We focus on the effects of

varying directional selection on standing genetic variation

in SA loci.
2. Model
Our goal was to extend previous models aiming to under-

stand the conditions necessary for the maintenance of SA

genetic variation based on one- and two-locus population

genetic models [15,17–19,21,42]. We employed forward-

time individual-based simulations to examine the role of

epistasis because of the difficulties involved with assessing

the simultaneous effects of polygenic inheritance, recom-

bination and epistasis in this context analytically [21,42],

using the Python-based simulation program simuPOP

(v. 1.1.1). This platform offers a versatile and effective model-

ling environment for advanced evolutionary simulations

[43,44], including sexual antagonism [18]. See the electronic

supplementary material for an example script.
We consider a diploid species with separate sexes where,

at each of two autosomal loci with standard Mendelian

inheritance and zero mutation rate, one allele is favoured

by selection in males and another is favoured in females. Fol-

lowing Kidwell et al. [15], the most fit genotype of each sex

was given the relative fitness of 1, and sm and sf for the

two loci represent the additive selection coefficients against

the less-fit homozygote in males and females, respectively.

The loci- and sex-specific dominance parameters, hm and hf,

represent the dominance of the less-fit allele in males and

females, respectively, and thus refer to the dominance of

different alleles in the two sexes (ranging from h ¼ 0 (reces-

sive) over h ¼ 0.5 (additive) to h ¼ 1 (dominant)). We used

a multiplicative model to describe epistasis [24]. This is not

only the most commonly employed population genetic

model of epistasis and the one deemed most representative

of natural populations [24], but it also yields fitness functions

that correspond very well indeed with the biological scenario

described in the introduction (figure 1). Here, epistasis was

included by adding a coefficient of additive � additive epis-

tasis, 1, such that the genotype-specific effects of one locus

depend upon the genotype of the other. We thus assume

that additive � dominance and dominance � dominance

epistasis are of minor importance relative to additive � addi-

tive epistasis. The resulting sex-specific fitness matrices are

http://rspb.royalsocietypublishing.org/


Table 1. Fitness matrix for each of the nine diploid genomes in males and females under SA genetic variation, where the alleles a and b are favoured by
selection in males and A and B are favoured in females, including additive � additive epistasis between the two loci. Here, h represents the dominance
parameter of the less-fit allele and s the selection coefficient against the less-fit homozygote, both of which are loci- and sex-specific, and 1 the sex-specific
additive � additive epistasis coefficient. Note that forms of epistasis other than additive � additive are not considered here.

aa aA AA

males

bb 1 1 2 hAmsAm 1 2 sAm

bB 1 2 hBmsBm (1 2 hAmsAm)(1 2 hBm sBm) þ 1m (1 2 sAm)(1 2 hBm sBm) þ 21m

BB 1 2 sBm (1 2 hAmsAm)(1 2 sBm) þ 21m (1 2 sAm)(1 2 sBm) þ 41m

females

bb (1 2 sAf )(1 2 sBf ) þ 41f (1 2 hAf sAf )(1 2 sBf ) þ 21f 1 2 sBf

bB (1 2 sAf )(1 2 hBf sBf ) þ 21f (1 2 hAf sAf )(1 2 hBf sBf ) þ 1f 1 2 hBf sBf

BB 1 2 sAf 1 2 hAf sAf 1
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given in table 1 and illustrated in figure 1 (see also the

electronic supplementary material).

We explored two distinct forms of varying degrees of

additive � additive epistasis. First, the coefficient of epistasis,

1, was given a fixed value ranging from 0 (no epistasis) to

20.1 (strong negative epistasis). This means that the absolute

strength of the epistatic effect will be independent of the addi-

tive selection coefficients. Under such ‘absolute’ epistasis, the

relative contribution of epistasis to fitness variation will thus

increase as the strength of directional selection decreases.

Second, the coefficient of epistasis was instead made pro-

portional to the overall strength of additive selection, such

that in each sex 1 ¼ ([sA þ sB]/2) c. Here, c is a scaling coeffi-

cient ranging from 0 (no epistasis) to 21/3 (strong negative

epistasis). Under such ‘relative’ epistasis, the relative contri-

bution of epistasis to fitness variation will thus be fixed and

will be independent of the additive selection coefficients.

All simulations used a stable population size of 5000 indi-

viduals and were run for 5000 generations to ensure that

allele frequencies equilibrated. Points of parameter space in

which at least one locus showed some polymorphism after

5000 generations were deemed to show protected poly-

morphism. We note here that allele frequencies stabilized

after between only a few hundred and two–three thousand

generations. Because of the very high dimensionality of par-

ameter space in our models, we made two simplifying

symmetry assumptions. First, we assume that the two loci

‘behave’ in a similar manner, such that they make an equal

contribution to fitness variation within each sex (i.e. hAm ¼

hBm, sAm ¼ sBm, hAf ¼ hBf and sAf ¼ sBf ). Second, although

we allow the relative strength of directional selection to

vary independently in males and females (see below), we

assume that the epistatic contribution to net fitness is similar

in males and females (i.e. 1m ¼ 1f for absolute epistasis and

cm ¼ cf for relative epistasis).

We focus here on the results of 3� 4� 2� 3 (i.e. 72) dis-

tinct sets of conditions. First, previous research has shown

that the pattern of sex-specific dominance is critical for the

zone of protected polymorphism in autosomal SA loci

[15,17,18]. We thus explored the dynamics under three levels

of sex-specific dominance (h¼ 0.2, 0.35 and 0.5 in both sexes)

(see the electronic supplementary material for h¼ 0.8).

Second, we assessed the effects of no (1¼ 0/c¼ 0), weak

(1 ¼ 20.01/c¼ 20.033), intermediate (1¼ 20.05/c¼ 20.166)
and strong (1¼ 20.1/c¼ 20.33) epistasis. Third, we compared

the effects of absolute and relative epistasis (see above). Fourth,

as the rate of recombination affects invasion criteria of epistati-

cally interacting SA alleles [40], we investigated the dynamics

under no (r¼ 0), low (r¼ 0.05) and maximally high (r¼ 0.5)

recombination rates. The cases of r¼ 0 and r¼ 0.5 are given

in the electronic supplementary material.

For each of the 72 sets of conditions, we ran 3000 indepen-

dent replicate simulations. Previous research has shown that

the relative strength of directional selection is key [15,17–

19,21,42]. We thus explored the sex-specific selection space

by drawing selection coefficients (s) at random from a stan-

dard uniform distribution ranging from 0 to 0.3 in each

individual simulation. This focus on relatively weak selection

[15] is motivated by the fact that phenotypic SA selection in

the wild is typically fairly weak [1,28,45]. Finally, to ensure

that our results were not affected by varying starting frequen-

cies of alleles, the starting frequencies of the a and b alleles

were drawn independently at random from a standard uni-

form distribution ranging from 0.05 to 0.95 in each

individual simulation.
3. Results and discussion
As originally pointed out by Kidwell et al. [15], the pattern of

sex-specific dominance is the most important determining

factor for protected polymorphism in autosomal SA alleles

[17]. Our analyses demonstrate that this is generally true

also for epistatically interacting SA loci: cases where the

most beneficial allele in each sex is also dominant in that sex

show polymorphism in SA alleles over a much wider range

of selection intensities (left column in figures 2 and 3). In the

absence of epistasis (1 ¼ 0/c ¼ 0), polygenic inheritance of

SA genetic variation per se led to a slightly expanded region

of polymorphism at both loci (black wedge) compared with

the single locus case (cf. top row 1 in figures 2 and 3 with

Kidwell et al. [15]). This effect was also observed in the two-

locus models of Patten et al. [21,48] and in the multi-locus

models of Vellnow [46] and is no doubt due to the fact that

selection across several linked loci results in an increased effec-

tive net strength of SA selection under a multiplicative fitness

model [21,42]. Consequently, the variance-promoting effect of

‘heterozygote advantage’ in harmonic mean fitness across the

http://rspb.royalsocietypublishing.org/
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Figure 2. The effect of absolute epistasis on SA genetic variation. Each plot illustrates the effects of varying the strength of selection in both sexes (range of
s ¼ 0 – 0.3 in both sexes) for a recombination rate r ¼ 0.05, under a given set of dominance and epistasis. Each point within plots represents the outcome
of a single simulation, where the colour denotes different allelic states at the end of the run (black, polymorphism at both loci; blue, fixation of the male
benefit allele in both loci; red, fixation of the female benefit allele in both loci; grey, loss of polymorphism in one locus and polymorphism at the other locus;
light and dark brown, fixation of alleles in the male benefit state in one locus and the female benefit state in the other locus at alternate loci (aaBB and
AAbb)). See text, table 1 and figure 1 for further details of the simulations.
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two sexes [15,17,18] is strengthened. Similar to the one locus

case, beneficial alleles in the sex under stronger selection

will fix when net selection intensities become sufficiently

imbalanced between the sexes.

Negative epistasis had a substantial impact on the main-

tenance of SA genetic variation as well as on the sex-specific

pattern of fixation. We distinguish three effects of the general

epistatic scenario explored here. First, in general, epistasis

tends to increase the diversity of equilibrium states (figures

2 and 3). In fact, under some parameters for h and 1/c,

seven possible outcomes were observed, depending on the

balance between additive selection in males and females.

These are: polymorphism at both loci (black), fixation of

alleles at both loci in the male benefit state (blue) or female

benefit state (red), fixation of alleles in the male benefit

state at one locus and polymorphism at the other locus

(grey zones to the right), fixation of alleles in the female

benefit state at one locus and polymorphism at the other

locus (grey zones to the left) and fixation of alleles in the

male benefit state at one locus and the female benefit state

at the other locus (light and dark brown).

Second, when beneficial alleles show sex-specific domi-

nance for fitness, which is arguably a biologically realistic

scenario [17], negative epistasis can markedly increase par-

ameter space under which stable polymorphism is

maintained in one or both alleles. This effect is most apparent

under relative epistasis (figure 3). In part, the reason for this
expansion of the zone of polymorphism is that epistasis rep-

resents an additional force of selection, and the conditions for

the maintenance of SA genetic variation widens with increas-

ing strength of selection [15]. However, we also found an

additional polymorphic state (grey areas) that appears

between those regions where both loci are fixed for male or

female benefit alleles and those where both loci are poly-

morphic. In this domain, one locus is fixed for the

beneficial allele in the sex under stronger selection, whereas

the second locus remains polymorphic. This outcome is

quite intuitive. It occurs because fixation at one locus results,

through negative epistasis, in increased selection on the

second locus in the other sex and therefore in a greater bal-

ance in net selection between males and females. This

contrasts with the classic view that stable polymorphism in

SA loci requires that additive selection in the two sexes

approaches equivalence [15]. The effect of negative epistasis

is, in fact, negatively frequency-dependent across loci,

where an increase in the frequency of beneficial alleles at

one locus increases selection for beneficial alleles at the

other locus in the other sex (figure 4). This additional

domain of polymorphism thus represents an important

novel insight. Across many epistatically interacting SA loci,

evolution may proceed towards an increased balance

between males and females in effective net selection on

such loci (and thus the maintenance of SA genetic variation),

through changes in allele frequencies and the selective

http://rspb.royalsocietypublishing.org/
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Figure 4. An illustration of frequency-dependent SA selection across loci
under negative epistasis. Here, q denotes the frequency of the male benefit
allele (b) at the B locus. The figure shows harmonic mean fitness across the
two sexes (assuming Hardy – Weinberg proportions at the B locus) over
the genotypes of the A locus, where a is favoured in males. As the male
benefit allele at the B locus (i.e. b) increases in frequency, there is increased
net selection for the female benefit allele at the A locus (i.e. A). Under inter-
mediate frequencies, there is net balancing selection on the A locus. The
scenario visualized is absolute epistasis for sm ¼ sf ¼ 0.3, hm ¼ hf ¼ 0.2
and 1m ¼ 1f ¼ 20.1.
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fixation of some of the SA loci. A direct test of this interesting

possibility, however, would require a dedicated modelling

effort since it is unclear precisely how well the situation we

model (two interacting and similarly behaved loci) captures

the dynamics of even more complex scenarios.

Third, over large parts of the parameter space explored

here, epistasis generated fixation of opposing male benefit/
female benefit alleles at the two loci (i.e. either a and B or

A and b) (see brown areas in figures 2 and 3). These sexually

balanced zones emerge in different areas depending on the

degree of sex-specific dominance and the type of epistasis.

In the two-locus scenario modelled here, these zones often

occupy a sizeable part of the selection space. Here, which

of the two loci that fixed for which allele was entirely deter-

mined by the starting frequency of alleles (figure 5),

illustrating the fact that selection in one locus by definition

will depend upon the allele frequency at other loci under

epistasis [32,47]. This sexually balanced outcome is again

caused by a general and quite intuitive effect (figure 1),

very similar to the grey zones discussed earlier. When, for

example, the frequency of the male benefit allele in one

locus increases (as a result of starting conditions, selection

and/or drift), this alters selection in the other locus in two

ways: selection for the male benefit allele in males is wea-

kened, whereas selection for the female benefit allele in

females is strengthened. The brown regions in figures 2

and 3 represent conditions under which such modulation of

net selection does not suffice to generate a balance in net

selection between males and females, leading to the fixation

of opposing alleles at the two loci. In essence, an evolutionary

‘win’ at one locus for a given sex leads to an evolutionary

‘loss’ in the other locus. This interesting outcome of the SA

tug-of-war between the sexes has, to our knowledge, not

been observed before and we term this the ‘equity effect’.

The dynamics under absolute and relative epistasis differ

substantially, which is unsurprising given the fact the epi-

static contribution to net selection is very different under

these scenarios (see the electronic supplementary material,

figure S1). Which scenario is biologically generally most

reasonable is debatable [35,36], but we suggest that relative

http://rspb.royalsocietypublishing.org/
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Figure 5. The effect of relative starting frequency of male benefit alleles on
locus specific fixation, in a region of parameter space showing the equity
effect (see figure 2 for colour codes). Under SA epistasis, the relative strength
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(0.0 – 0.15) (r ¼ 0.05, hm ¼ hf ¼ 0.2 and 1m ¼ 1f ¼ 20.1).
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epistasis should best describe the scenario we aimed to

explore here. Connallon & Clark [40] showed that elevated

rates of recombination reduce the probability of invasion of

positively interacting SA loci, and Úbeda et al. [48] showed

that recombination rate has large effects on the degree of link-

age disequilibrium across non-interacting SA loci. Yet, we

found that the rate of recombination had a relatively minor

impact on the zone of SA polymorphism at equilibrium.

Although a decreased recombination rate led to an expansion

of the zone of polymorphism, in agreement with the findings

of Patten et al. [21,48], this effect was very slight indeed (see

the electronic supplementary material). Thus, the degree of

linkage seems to have no major effects on the ultimate evol-

utionary fate of SA alleles across epistatically interacting loci.

It is interesting to contemplate the implications of the

equity effect. First, it implies that there will be substantial vari-

ation among populations at SA loci, with alternates fixed in

different populations and, consequently, pronounced interpo-

pulation variation in SA traits. Second, gene flow across

populations or within meta-populations should markedly

elevate the degree of SA genetic variation and SA selection.

Interpopulation divergence is a common result of epista-

sis [49,50], because variation in the frequencies of any

interacting alleles (due to selection or drift) in each popu-

lation determines the selective consequence for other

interacting alleles [51]. We have so far exemplified the scen-

ario explored here as one where a single life-history trait is

encoded by two loci. However, an alternative but entirely

analogous representation is a situation where several traits

are instead favoured by sex-specific selection. Imagine, for

example, two sexual traits that are favoured by sexual selec-

tion in males but are costly when expressed in females,

each of which is encoded by a single locus. Here, epistasis

between the two SA loci will result whenever the recruitment

of an additional sexual trait yields diminishing rewards to

males and accelerating costs to females as a result of curved

fitness surfaces (figure 1). Divergence between populations

is a hallmark of sexually selected or sex-related traits, but is

usually attributed to reinforcement or to differences among
populations in the strength of sexual and natural selection

operating upon these traits. Our analysis suggests that even

in the complete absence of interpopulation differences in

selection, different alleles may fix through the equity effect

as a result of even relatively minor differences in allele fre-

quencies across loci (figure 5). Such differences may result

from, for example, different allele frequencies among foun-

ders or from the interaction between genetic drift and

selection in small populations or during bottlenecks [41].

There is considerable evidence from population crosses that

SA traits vary among populations [52], although some or

all of this variation can potentially be attributable to a history

of different selection regimes among populations [53], which

can determine the course of SA coevolution [54,55]. Similarly,

we might expect substantial interpopulation and interspecific

variation in sex-biased gene expression, given that SA genes

are likely to be sex-biased. Both of these patterns have been

observed, primarily in male-biased genes [56–58].

Under the equity effect, SA loci will essentially remain

hidden until populations are crossed to those fixed for the

alternative alleles. In models with epistasis but without SA

selection, crossing diverged populations often results in

depressions in fitness [49,50,59]. The reason for this is that

within populations, when epistasis is present, different

adaptive combinations of alleles at two or more loci will

evolve. When these alternative ‘coadapted gene complexes’

are crossed, heterozygotes with unfavourable combinations

of alleles are created, breaking up the coadapted sets and

reducing fitness (i.e. Dobzhansky–Muller incompatibilities).

There would be similar effects in the cases considered here

in that crossing will yield an excess of heterozygotes, at

alternatively fixed loci. However, the effects on population

fitness and viability are much less obvious, because some

loci for some populations are fixed for male benefit alleles,

and others for female benefit alleles. Production of heterozy-

gotes will increase population fitness relative to the case

where male benefit alleles are fixed, but decrease it relative

to the case where female benefit alleles are fixed. Therefore,

crossing may even elevate population fitness if relief from

the female specific genetic load that derives from fixed

male benefit alleles outweighs the deleterious effects to

females from expressing heterozygotes at loci fixed for

female benefit alleles, summed over multiple interacting

SA loci.

The presence of interpopulation variation where alleles

are fixed at alternative SA loci will contribute to speciation

insofar as it contributes to population divergence, particu-

larly in SA loci that are likely to encode for reproductive

traits, which is a prerequisite for reproductive isolation

[52,60–62]. Interlocus sexual conflict theory has demon-

strated that the outcome of SA coevolution will vary with

initial conditions and that stochastic effects, including genetic

drift, should play a major role [42,63,64]. The equity effect

demonstrated here adds to this general conclusion and is

likely to promote divergent SA coevolution, assuming that

some loci are involved in both inter- and intralocus sexual

conflict, therefore contributing to population differentiation,

incompatibilities and reproductive isolation. More generally,

the equity effect will generate mutation-order speciation, as

we expect different populations to evolve to different genetic

states even under identical selective regimes [65–67] simply

as a result of the order in which alleles fix across epistatically

interacting SA loci.

http://rspb.royalsocietypublishing.org/
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4. Conclusion
Our results show that the incorporation of negative epistasis in a

two-locus model of SA genetic variation has substantial effects

on the maintenance of variation and on equilibrium conditions.

In general, epistasis increases the diversity of equilibrium states

for SA loci across a reasonable range of parameter space. Under

a wide range of conditions, the parameter space showing

polymorphism in one or both loci increases with epistasis,

suggesting that epistasis may be contributing to the observed

presence of segregating SA genetic variance for fitness. Finally,

there were large regions of parameter space where beneficial

alleles for one sex were fixed at one locus and beneficial alleles
for the other sex were fixed at the second locus. Given that

which locus was fixed for which alleles depended upon starting

frequency, epistasis may be playing an important role in the

divergence of SA traits among populations and speciation

through this equity effect.
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30. Tarka M, Åkesson M, Hasselquist D, Hansson B.
2014 Intralocus sexual conflict over wing length in a
wild migratory bird. Am. Nat. 183, 62 – 73. (doi:10.
1086/674072)

31. Berg EC, Maklakov AA. 2012 Sexes suffer from
suboptimal lifespan because of genetic conflict in a
seed beetle. Proc. R. Soc. B 279, 4296 – 4302.
(doi:10.1098/rspb.2012.1345)

32. Whitlock MC, Phillips PC, Moore FBG, Tonsor S.
1995 Multiple fitness peaks and epistasis. Annu.
Rev. Ecol. Syst. 26, 601 – 629. (doi:10.1146/annurev.
es.26.110195.003125)

33. Martin G, Elena SF, Lenormand T. 2007 Distributions
of epistasis in microbes fit predictions from a fitness
landscape model. Nat. Genet. 39, 555 – 560.
(doi:10.1038/ng1998)

34. Chou HH, Chiu HC, Delaney NF, Segrè D, Marx CJ.
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